
推進戦略に基づく全国での取組

平成27年 2月12日

国土交通省 総合政策局 公共事業企画調整課

1.情報化施工推進戦略の策定(平成25年3月)

■ 平成25年に新たな情報化施工推進戦略が策定され、『「使う」から「活かす」へ、 新たな建設生産の段階へ挑む!!』とし、重点目標を定め実施しています。

5つの重点目標

①情報化施工に関連するデータの利活用に関する重点目標

- ・従来の手法に代わる施工管理、監督・検査の実現と設計や維持管理に関する技術基準の見直し
- ・CIM導入の検討と連携し、3次元モデルからの3次元データの作成や施工中に取得出来る情報の維持管理での活用

②新たに普及を推進する技術・工種の拡大に関する重点目標

・有望な技術の適用性・効果を検証・評価し、新たに普及推進する技術・工種の拡大

③情報化施工の普及の拡大に関する重点目標

- ・コストの縮減が期待でき、技術的に確立している技術を一般化推進技術として選定し、3年を目途に一般化するための計画的な普及を推進する
- ・実用化検討技術を選定し、一般化推進技術と同様の普及措置を実施する

④地方公共団体への展開に関する重点目標

・情報化施工の周知やコストの縮減を積極的に行い、平成30年度までに、全ての都道府県と政令指定都市の発注する工事において、一般化技術の活用を目指す

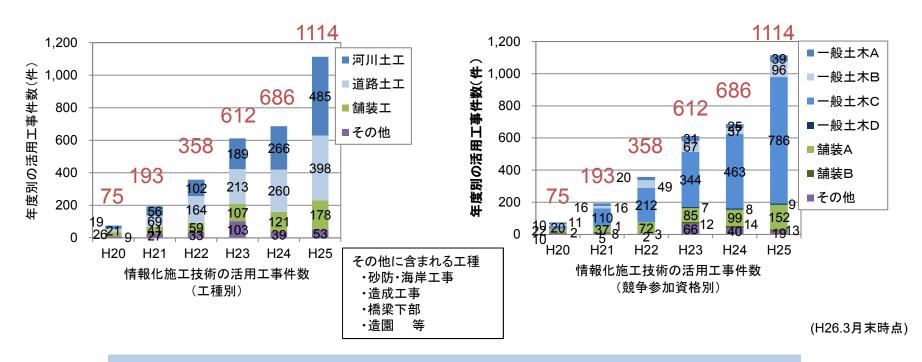
⑤情報化施工に関する教育・教習の充実に関する重点目標

・情報化施工に関する教育・教習の充実と優れた技能者・技術者を広く育成していく仕組みの構築を目指す

10の取り組み

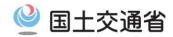
- ①情報化施工による施工管理要領、監督・検査要領の整備
- ②情報化施工の定量的な評価の実施
- ③技術基準類(設計・施工)の整備
- ④CIMと連携したデータ共有手法の作成

⑤新たな技術や既存の技術を導入し普及する仕組み作り

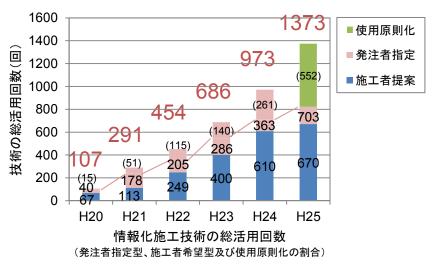

- ⑥一般化及び実用化の推進
- ⑦ユーザが容易に調達できる環境の整備
- ⑧情報発信の強化
- ⑨情報化施工の導入現場の公開や支援の充実

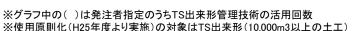
⑩研修の継続と内容の充実

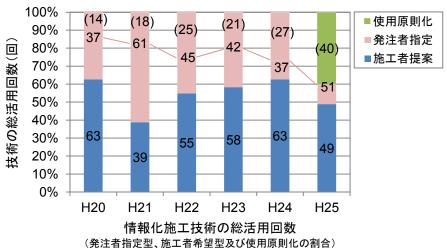
2.1 情報化施工技術の活用工事件数



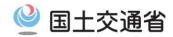
- •平成25年度の情報化施工技術の活用工事件数は、1000件を突破(1114件)
- •TSを用いた出来形管理(河川土工・道路土工)の国土交通省直轄工事使用原則化により、特に<u>一般</u> 土木のCでの活用件数が急増。
- •一般土木Cの占有率はH24年度約6割→H25年度約7割(1114件のうち786件)




情報化施工技術の活用工事件数(契約年度別)

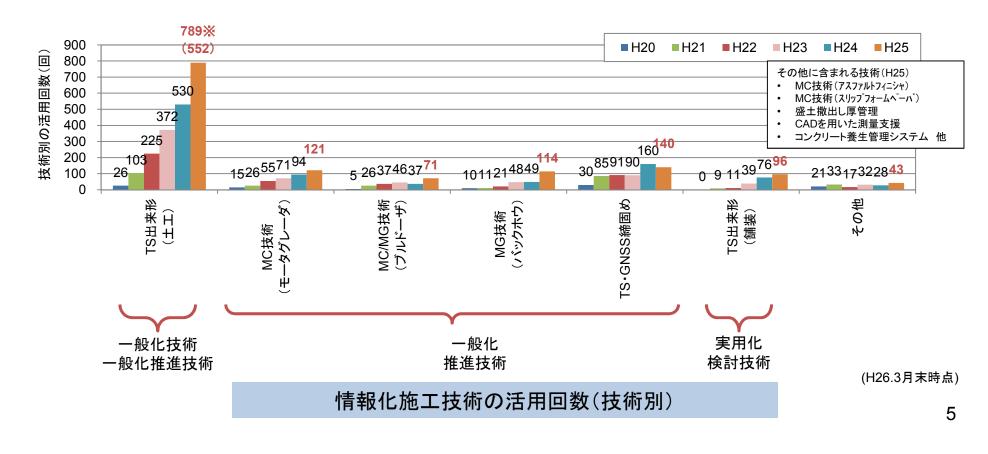

2.2 情報化施工技術の総活用回数

- •平成25年度の情報化施工技術の<u>総活用回数は、1373回</u>となっており着実に増加
- ・使用原則化により発注者指定型の占める割合が約5割(1373回のうち703回)と増えたものの、<u>施工</u>者希望型の活用回数も<u>着実に増加(H24</u>年度約610回→H25年度<u>約670回</u>)

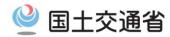

※グラフ中の()は発注者指定のうちTS出来形管理技術の活用回数 ※使用原則化(H25年度より実施)の対象はTS出来形(10,000m3以上の土工)

(H26.3月末時点)

(H26.3月末時点)


情報化施工技術の総活用回数(契約年度別)

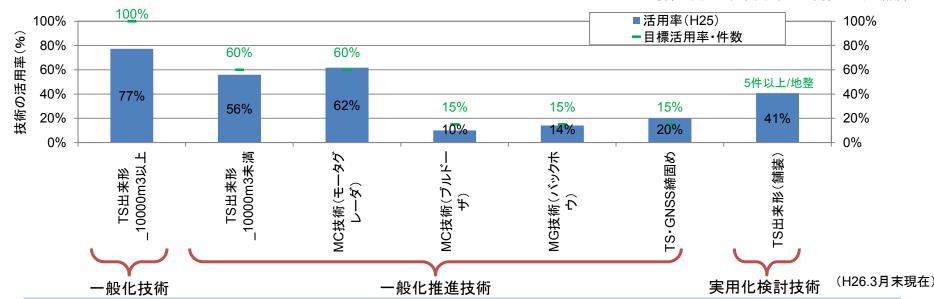
2.3 情報化施工技術の総活用回数(技術別)



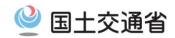
- •平成25年度の情報化施工技術別の活用回数は、TS出来形が789回と圧倒的に多い。TS出来形の うち、使用原則化となったTS出来形(10,000m3以上の土工)の活用回数は552回となっている。
- 一般化推進技術については、MC技術(モータグレーダ)が121回、TS・GNSS締固めが140回と比較的多いが、MC/MG技術(ブルドーザ)が71回、MG技術(バックホウ)が114回と、前年度よりも急激に増加してきている。
- •実用化検討技術も含めて、各技術とも活用回数が着実に増加

グラフ中の()は使用原則化の活用回数ー使用原則化の対象はTS出来形(10,000m3以上の土工)ー ※TS出来形(土工)の活用回数は、土工が主な工種でない場合(9回)を含む。

2.4 情報化施工技術の活用率(技術別)

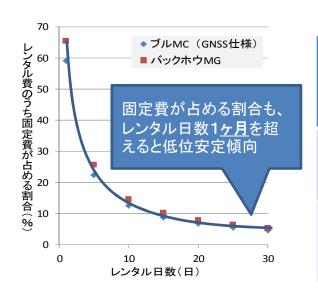

- ・平成25年度の発注済工事に対する情報化施工技術の活用率をみると、一般化技術については、<u>TS</u> 出来形(10,000m3以上の土工)が77%の活用率となっている。
- 一般化推進技術については、TS出来形(10,000m3未満の土工)が56%、MC技術(モータグレーダ)が62%、MC/MG技術(ブルドーザ)が10%、MG技術(バックホウ)が14%、TS・GNSS締固めが20%となっている。
- ・実用化検討技術については、TS出来形(舗装)が41%となっている。

	導入済み	登注落	活用率(発注済のみ)	目標活用率•			
サスカット 光光次 九元平(光光次)のか) 工事件数 工事件数				目標件数	活用率の集計の考え方		
TS出来形(土工)10,000m3以上	647	837	77%	100%	10,000m3以上の土工に対する活用率		
TS出来形(土工)10,000m3未満	133	238	56%	60%	10,000m3未満の土工に対する活用率		
MC技術(モータグレーダ)	101	161	63%	60%	5,000m2以上路盤工に対する活用率		
MC/MG技術(ブルドーザ)	52	523	10%	15%	10,000m3以上の盛土に対する活用率		
MG技術(バックホウ)	61	434	14%	15%	10,000m3以上の片切・浚渫工および10,000m2以 上の法面整形工に対する活用率		
TS・GNSS締固め	104	523	20%	15%	10,000m3以上の盛土に対する活用率		
TS出来形(舗装)	96	236	41%	5件以上/地整	舗装工(路盤工)に対する活用率		


活用率の推移(年度別)

	TS出来形	MC技術(モータグレーダ)
H20	3.2%	11.8%
H21	9.5%	12.1%
H22	22.2%	35.7%
H23	44.0%	46.3%
H24	65.3%	45.5%
H25	77% (56%)	62%

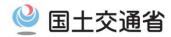
※表中の()はTS出来形(10,000m3未満の土工)の活用率


3. MC/MG機器の効率的な調達状況から見た施工規模

- •MC/MG機器は、ほとんどの場合がレンタルで調達されている。
- ・レンタルでは、日当たり費用の他に、初期費や整備費がかかるため、<u>短期では割高となる</u>(レンタルの初期費用と日当たり賃料の関係による)※1
- ・レンタルで導入したMC/MG機器のコストパフォーマンスを実感できるのは、ある程度の期間(1カ月以上が目安)で、かつ、MC/MG機器を連続的に(高い稼働率で)活用できた場合と考えられる。※2
- •切土工(オープンカット)および切土工(片切掘削)において、MGバックホウを連続的に1ヶ月間以上稼働させるためは、約1万m3以上の施工土量が必要となる。
- •盛土敷均し工において、MC/MGブルドーザを連続的に1ヶ月間以上稼働させるためには、約2 万m3以上の施工土量が必要となる。

※1:MC/MG機器をレンタルで調達する場合、レンタル1回毎に機器の設置・取り外しのための費用(固定費)が必要となる。また、レンタル1回毎に機器の整備費も計上される。

※2: 月あたりレンタル費は、日当たり単価×15~20日相当となっている場合が多い。この他、1ヶ月を最低期間とする場合もある。



【1ヶ月間以上稼働させるために必要となる施工数量の目安】

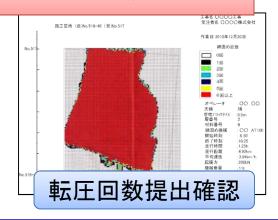
使用する 情報化施 工技術	工種/作業	作業条件	①日当り施工量 (国土交通省土 木工事積算基 準による)	②1ヶ月間の稼働を 想定した場合に、必 要となる施工土量 ①×25日※ ※一ヶ月の実稼働日数	結論
MG バックホウ	土工/掘削	・平積み0.6m³ ・施工量5万m³ 未満	300m³/日	300m3/日×25日= 7,500m ³	7,500m ³ <10,000m ³ 約1万m ³ の 施工土量が必要
MC/MG ブルドーザ	路体(築堤) 盛土/敷均 し締固め	・21t級 ・高含水比粘性 土以外 ・施工量1万m ³ 以上	600m³/日	600m3/日×25日= 15,000m ³	15,000m³ <20,000m³ 約2万m³の 施工土量が必要

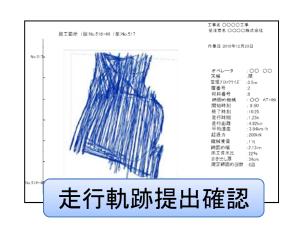
※固定費、日当りレンタル費はレンタル会社へのヒアリングによる

4. 今年度以降情報化施工の実施方針について

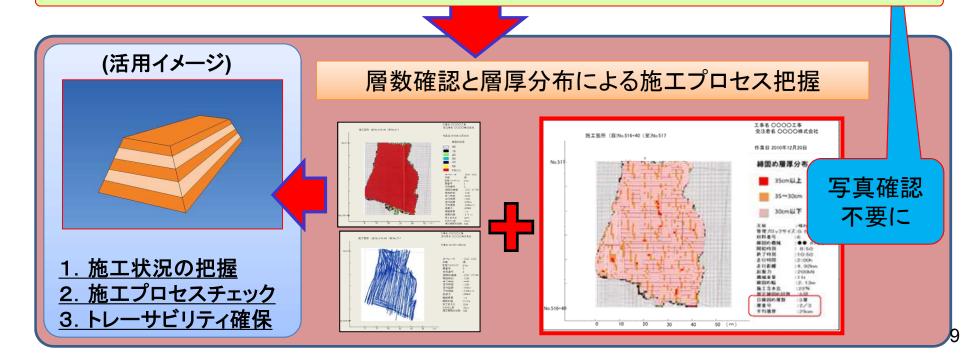

- •昨年度同様、情報化施工技術の浸透状況の目安として「活用率」を採用する。
- •活用率の母集団については、<u>試行のターゲットを絞る</u>考え方から、MCグレーダは路盤整形工を含む全ての工事、MC/MGブルドーザは20,000m3以上、MGバックホウは10,000m3以上、TS・GNSS締固め管理は10,000m3以上を母集団とする。
- •ただし、**母集団以上の施工規模の活用率の向上だけに固執することなく**、母集団以下の施工規模についても、引き続きインセンティブ措置等情報化施工の施策の対象とする。
- 小規模な工事での活用事例や効果的な運用事例については、ベストプラクティスとして取りまとめることも予定。

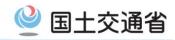
【技術別実施方針】

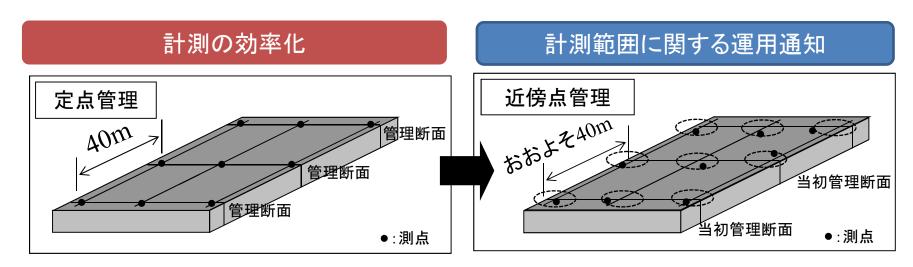

対象技術	活用率の目安	│ │備 考			
对象权例	対象工種	対象規模 平成27年度目標(案)		H25実績 ^{※1}	₩ 75
TSを用いた出来形管理	土工を含む工事	10,000m3 以上	100%	77%	
	エエを召の工事	10, 000m3 未満	60%	56%	H25年度の方針を継続
MC(モータグレーダ)	路盤整形工(舗装工)	5, 000m2 以上	60%	63%	H25年度の方針を継続
MC/MG(ブルドーザ)	盛土工(河川土工・道路土工)	20, 000m3 以上	60%	11%	H26年度の実績を踏まえて 目標の再設定あり
MG(バックホウ)	掘削工(河川土工・道路土工)	10,000m3 以上	60%	14%	H25年度の方針を継続
TS・GNSS締固め管理技術	盛土工(河川土工・道路土工)	10,000m3 以上	60%	20%	H25年度の方針を継続
TSを用いた出来形管理 (舗装工)	舗装工(新設・修繕)		40%	96件	H26年度の実績を踏まえて 目標の再設定あり
MC路面切削機、ASフィニッ シャ、締固め加速度応答、 MCバックホウ等				43件	


- ※1 上記の活用率の目安を母集団として集計した活用率
- ※2 MC/MG(ブルドーザ)とTS・GNSS締固め管理技術は盛土工、MG(バックホウ)は掘削工を母集団として集計

5. 来年度からの新たな取組み例(締固め回数管理)

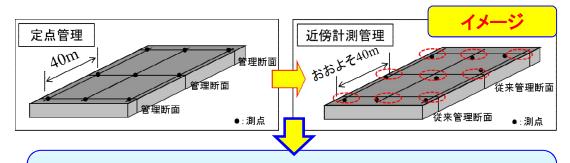

従来の転圧回数管理手法




・自動取得できる機械の位置情報を活用し、施工時の層厚を把握する(選択)

6-1. 現在検討中の取組み例(近傍点計測)

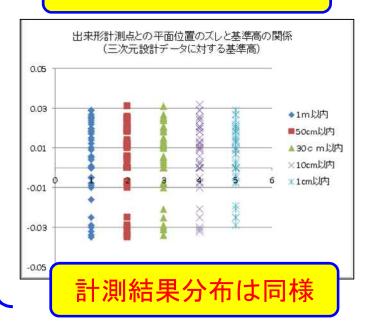

● MC・MG施工を前提とした施工管理効率化


→ 定点へのプリズム誘導時間の短縮による効率化

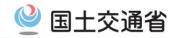
・施工者の希望により実施できる

6-2. 現在検討中の取組み例(近傍点計測)

○<u>丁張りに依存しない</u> 出来形計測 出来形計測 許容範囲を拡大する


○ MC·MG施工箇所で協議により計測箇所を概ねと し前後1m等の計測許容範囲を設ける

平成25~26年度


- O MC施工実現場で計測実証
- <mark>試行運用を通知</mark> 結果の蓄積(関東地整)

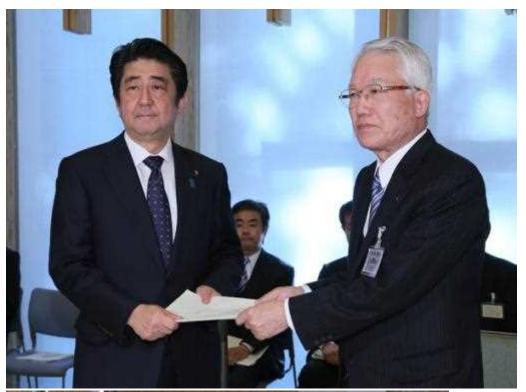
計測作業時間が半分

7. 情報化施工の講習会・見学会等の開催

現場見学会、技術講習会、意見交換会、シンポジウム等

対象:建設業関係者、自治体職員等

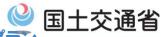
平成25年度 実績 158回開催 のべ12,000人参加



講習状況写真

ロボット新戦略

8-1. ロボット新戦略の策定(ロボット革命実現会議 平成27年1月23日)



平成27年1月23日、 安倍総理は、総理大臣官邸で 第6回ロボット革命実現会議 を開催しました。

会議では、「ロボット新戦略」 について議論され、取りまとめ が行われました。

(首相官邸ホームページより)

「全体構成とポイント】

(ロボット革命実現会議 2015年1月23日)

第1章 序章

第1節「ロボット大国日本」を取り巻く現状【ロボット大国の維持、課題先進国、世界の追い上げ】

第2節 ロボットの劇的変化と日本の未来 【自律化、情報端末化、ネットワーク化】

第3節 ロボット革命で目指すこと 【ロボットを変える(センサ、AI、IoT)、世界の拠点、利活用社会】

第2章 ロボット革命実現のための方策

第1節 ロボット創出力―日本のロボットを徹底して強化する

第2節 ロボットの活用・普及一日本の津々浦々に「ロボットがある日常」

第3節 世界を見据えたロボット革命の展開・発展一新たな高度IT社会を見据えて」

第2部に 具体に記載

第2部 アクションプラン一五カ年計画

第1章 分野横断的事項

第1節 「ロボット革命イニシアティブ協議会」の設置 【社会変革に繋がるロボット創出体制・環境整備】

第2節 次世代に向けた技術開発 【人工知能、センシング技術、OS・ミドルウェア 等】

ロボット国際標準化への対応 【ミドルウェア・ロボットOS、製造ロボットの標準化・プラットフォーム】

第4節 ロボット実証実験フィールドの整備 【インフラ用ロボット直轄現場・さがみロボット特区等】

第5節 人材育成 【ソフトウェア人材、Sler(システムインテグレータ)】

ロボット規制改革の実行【電波法、道路運送車両法、航空法、インフラ維持・保守関連法令等】

第7節 ロボット大賞の拡充/ 第8節 ロボットオリンピック(仮称)の検討

第2章 分野別事項

第1節 ものづくり分野/ 第2節 サービス分野/ 第3節 介護/医療分野

第4節 インフラ・災害対応・建設 (→*別紙)/* 第5節 農業分野

8-3. ロボット新戦略 アクションプランー五カ年計画(インフラ・災害対応・建設分野

●重点的に取り組むべき分野

建设一般

担い手不足、牛産 性向上、現場環境

→情報化施工等の建 設ロボット技術の導入 による省力化(無人 化)·自動化·作業補 助

災害対応

被災直後の調査や 応急対策の迅速化

→災害調査ロボットによ る被災状況把握の迅 速化

→無人化施工の施工 効率の向上

インフラ(維持管理)

点検、診断、補修 等に必要な技術者

→ロボット技術の導入に よる維持管理の効率 化・高度化の支援

8-4. 建設・インフラ・災害対応におけるロボット事例国土交通省

建设一般

(3) 重点的に取り組むべき分野

担心手不足、牛産性向上、現場環境の改善

(4) 2020年に目指す姿

(前工程·後工程を含む全体工程の生産性向上・省力化)

(ロボット事例※)※既存技術または開発中

▲マシンコントロールフブルトーザ技術

▲マシンコントロールハックホウ技術

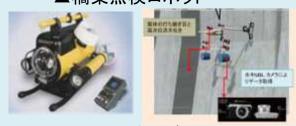
(維持管理)

(3) 重点的に取り組むべき分野

点検、診断、補修等に必要な技術者不足

(4) 2020年に目指す姿

重要・老朽化インプラの20%でロボット等を活用


(ロボル等の支援こと)急増する維持管理で対応)

(ロボット事例※)

▲橋梁点検ロボット

▲水中点検ロボット

災害対応

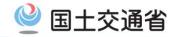
(3) 重点的に取り組むべき分野

被災直後の調査や応急対策の迅速化

(4) 2020年に目指す姿

過酷災害で有人と孫色は、無人作業を実現 (人が近づこか) (人が近づこか) (人が近づこか) (大が近づこか) (大が近づこか) (大が近づこか) (大が近づここか) (大が近づことが) (大が近づいで) (大が近づいで) (大が近づいで) (大が近づいで) (大が近づいで) (大が近づいで) (大が近づいで) (大が近づいで) (大が近がで) (大がで) (大が

(ロボット事例※)



▲災害調査ロボット(飛行型)

▲災害応急復旧ロボット(無人化施工)

17

ご清聴有り難うございました