建設技術フェア2008 in 中部 「ICTシンポジウム」

情報化施工技術と人材育成

【プレゼン用PP】

(社)日本建設機械化協会 施工技術総合研究所 上石修二

- 説明内容;
 - 1)「情報化施工推進会議」と (社)日本建設機械化協会
 - 2)情報化施工を支える技術
 - 3)情報化施工研修会について
 - 4)研修会実施状況(動画)
 - 5) 今後の課題

• 「情報化施工推進戦略」は国土交通省HPからダウンロード可能 http://www.mill.go.p/report/press/sogo15_hh_000009.html

1) 情報化施工推進会議 WG体制

情報化施工推進会議

委員長:建山和由(立命館大学)

基準•制度WG

主查:中野正則(国土交通省)

道路土工(盛土)

舗装工

河川土工(築堤)

ダム(堤体工)

各基準類策 定団体等と 連携を図る。 JCMA 情報化施工 委員会 情報化施工に関す るISO委員会 (TC127SC3WG5)

建設機械WG

主查:福川光男(JCMA情報化施工委員長)

規格検討SWG

主查:山元(土木研究所)

ICT施工研修SWG

主查:小薬(前田道路)

研修会の対応

情報化施工を支える技術(1);業務の効率化

設計図から座標計算

設計

測量の実施

丁張り設置

検測を繰り返して整形

従来方法

情報化施工

丁張りに合わせて施工

品質·出来形管理

完

図から座標計算

測量

張 設置

不要

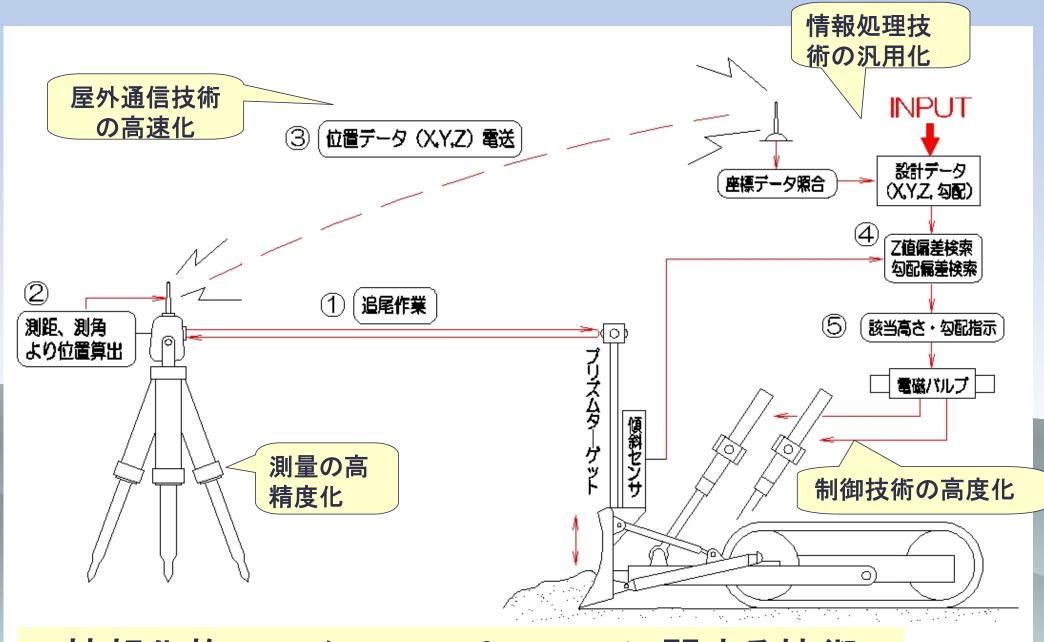
施 I 検測

品質 出来形管理

不要

不要

(1)設計図から データ抽出


(3)設計データによる IT施工

(2)新らしい測量データの 利用(面的なデータ取得)

不要

- (4)設計データと出来形 データによる施工管理
- (5) ICT監督·検査
- (6) IT施エデータの維持 管理での活用

2) 情報化施工を支える技術(2); MC技術

情報化施工:マシン・コントロールに関する技術

3)情報化施工研修会について

①情報化施工研修会の目的と内容

国土交通省が開催する『情報化施工推進会議』から「情報化施工推進戦略」が発表 (7月末)されました。その中では、情報化施工の普及のための重点課題のひとつに 「人材育成」が上げられています。(社)日本建設機械化協会は、情報化施工に関わ る人材を育成するため、「情報化施工研修会」を7月~9月に3回を実施し、今後も、 1~2ヶ月に1回の頻度で開催予定であり、逐次ご案内致します。

目的

3次元データを利用した建設機械制御に関する基本的な教育を実施し、実践的な活用(制御データの作成、マシンコントロール(MC)、ICT施工管理)が出来る技術者を育成します。

研修目標

現場施工での活用

各施工段階の技術を習得「情報化施工研修会」

起工測量

設計データ

施工図作成

制御データ

施工

出来形データ

出来形計測

研修内容

コース名	研修概要	主な研修内容	備考	
体験コース (1日間)	MCを用いた施工概要の把握(システム構成,運用)MC用データを使用した 実機施	情報化施工の動向マシンコントロール(MC)とは		
定員: 20名	● MU用データを使用した 美機旭 工の試乗体験	MC用データ作成の概要MC体験		
実務コース (2日間)	MC用データ作成からMC施工に至る一連の流れを実営設計データを搭載したTSを用いた	• 測量基礎とテータ利用	研修用パソコン、データ作成ソフトが利用可能 (一人一台)「研修修了証」を発行	
定員: 20名	測量データの活用方法、出来形管 理を実習	MCのハード設定MC施工実習		

コース2

実習ヤード 27.000m 10.000m 0.300m 3.000m 0.300m 3.000m 3.000m 0.300m 3.000m 3.000m 0.300m

実習ヤード概要

場所:静岡県富士市 (施工総研構内)

延長:約110m(コース1)

:約98m(コース2)

幅員:6m

横断勾配:1.5%~5.0% 縦断勾配:1.0%~2.0%

研修会の詳細、お問い合わせは、下記ホームページにアクセス

社団法人 日本建設機械化協会

〃 施工技術総合研究所

http://www.jcmanet.or.jp/

http://www.cmi.or.jp/

研修カリキュラム(実務コースの例)

第1日目

1	ガイダンス	
2	情報化施工の動向	
3	「マシンコントロールとは?」	
4	MC用データ作成の概要	
5	MCデータ作成の流れ	
6	設計図面の見方	
7	測量基礎とデータの利用	
8	MC用データ作成(1) (三角メッシュデータ作成方 法)	

第2日目

9	昨日の復習	
10	MC用データ作成(2) (3次元路線データの作成方 法)	
1	マシンコントロールのハード設 定	
12	作成したMC用データによる 施工実習 ①グレーダ ②ブルドーザ ③出来形管理	
(13)	質疑、研修終了証	

従来の企業自主研修との違い

追加/補強

企業自主研修の事例

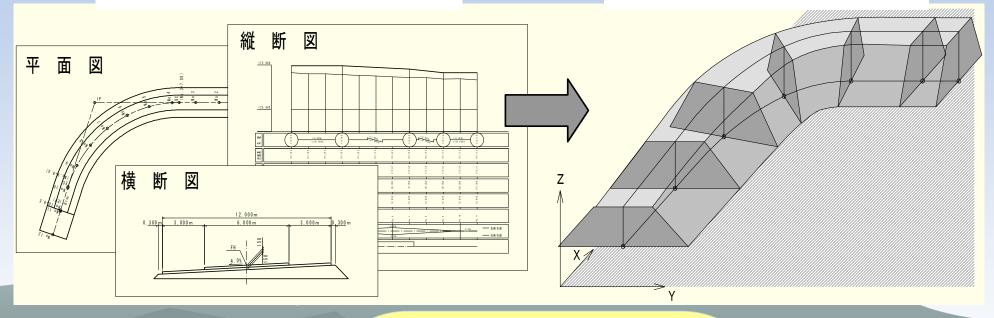
- 1)設計データの作成
- 2)情報化機器の説明
- 3)実 (建設機械の運転、 測量機器のデモ)

情報化施工の動向;

- 国交省要領の概要説明
- 要領策定の動向

設計データの作成;

- 設計図面の読み方
- 図面からの抽出方法の説明


TS出来形管理の実習;

- システム説明
- ・取扱の説明と体験

②設計データの作成・入力

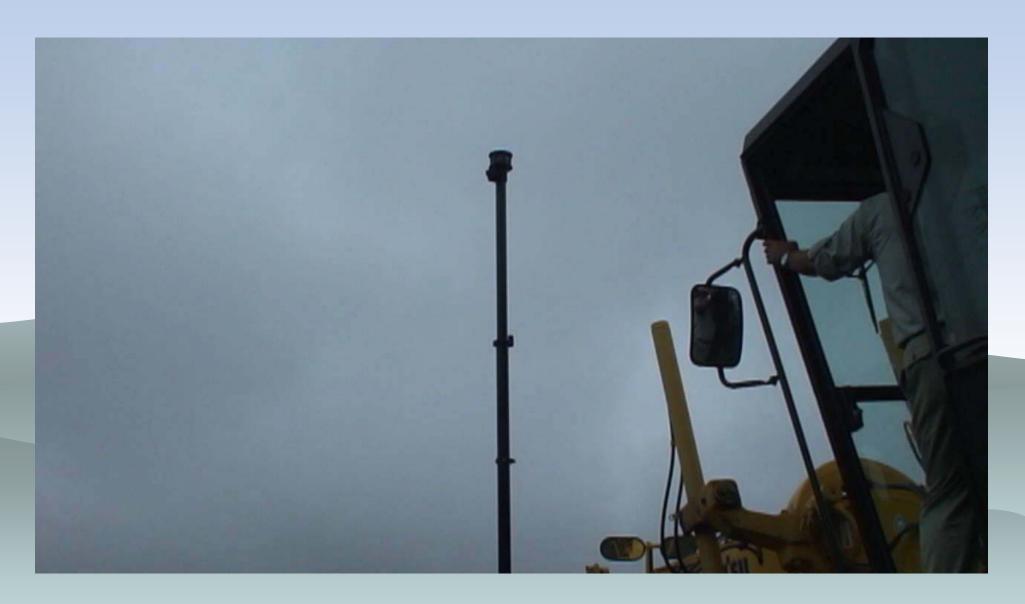
設計図書から線形要素を抽出

三次元設計データ構築

n		1 10 - 01	Σf_{κ}	75% -	MS Pゴシッ	ク 🔻 1	1 - B
	I12 -		55.126	2			
	A	В	С	D	E	F	G
1				F	3		
2	STA	×	Y	z	P2~P3幅(L)	全幅(L)	横断勾配
3	A0+00	15663,739	12195.764	129.674	0.720	11,020	-2.000 %
4	10	15672.040	12201.340	129.874	0.720	11,020	-2.000 %
5	20	15680.341	12206.917	130.074	0.720	11.020	-2.000 %
6	30	15688.641	12212.493	130.274	0.720	11.020	-2.000 %
7	40	15696.689	12218.447	130.489	0.430	1 0.240	-2.000 %
8	50	15704.237	12225.291	130.856	1.090	8.470	-2.000 %
9	60	15711.901	12232.246	131.155	1.730	7.210	-2.000 %
10	70	15719.862	12238.993	131.452	2.000	6.750	-2.000 %
11	80	15727.772	12246.032	131.789	2.000	6.750	-1.889 %
12	90	15735.080	12253.839	1 32.1 09	2.000	4.250	-1.000 %
13	1+00	15741.370	12262.185	132.409	2.000	4.250	-1.000 %
		15745 720	10071157	100 700	0.000	4050	_1 000K

研修風景(座学)

4) 情報化施工研修会(動画)


ブルドーザ(GPS)

ブルドーザ(TS)

グレーダー

5) 研修会の課題

1)研修制度

公的制度化現在、修了証の発行JCMA「1級、2級建設機械施工技士」制度との関連

2)研修内容

- 発注者向け研修会の導入
- 研修用ステップの取付(厚労省と調整)
- ・ 内容の拡充:バックホウ・ガイダンスの導入
- 対応メーカへの参加要請 (トプコンに加え、トリンブル、ライカが参加意思表明)

3)研修活動の普及

- 海外技術調査
- 地方自治体、地方の中小業者に向けの啓蒙活動。

発注者向けカリキュラム(検討中)

9:00~9:10	ガイダンス
9:10~9:50	情報化施工概要(20min)
	情報化施工の事例(20min):ビデオ
9:50~10:20	MCの概要(30min)
	│ ○MC概要 │ ○建設機械制御技術の発達
	○建設機械制御技制の先達 ○MCの機能と応用
10:30~12:00	出来形管理用設計データの作成実施(90min)
	〇設計データの図面読み取り・入力
	〇出来形管理用データ作成
	〇デモデータによる帳票作成の実施
12:00~13:00	昼食
13:20~14:20	MCの体験実習
	Oグレーダ、ブルドーザの搭乗体験
	│ ○振動ローラの搭乗体験
14:20~15:30	トータルステーションによる出来形確認
	○管理断面の計測
	│ ○任意断面の計測 │ ○任意断面の計測
	〇監督・検査機能による計測点確認
16:00~16:20	アンケート記入、修了

建設機械、研修用ステップの取付

最後に、研修会の実績と予定

- 7月~9月、3回の研修会開催 計50名の修了者
- 〇2008年11月13日(木)-14日(金)
- O2009年2月12日(木)-13日(金)

<次年度予定><u>2009•5•21-22</u>、2009•7• 16-17、2009•9•10-11

END

ご静聴ありがとうございました