
平成7年度

長良川河口堰モニタリング年報

(第2巻)

建設省中部地方建設局水資源開発公団中部支社

目 次

5 塩分の状況

5	- 1 平成	7年度モニタリング調査	5- 1
	5 - 1 - 1	輪中地域の地下水及び土壌塩化物イオン濃度の調査について	5- 1
	5 - 1 - 2	河川の塩化物イオン濃度の調査について	5- 1
5	- 2 平成	7年度モニタリング計画	5- 1
5	- 3 浅層 ¹	也下水	5- 3
	5 - 3 - 1	調査概要	5- 3
	5 - 3 - 2	調査方法	5- 3
	5 - 3 - 3	調査結果	5- 3
		1)長島輪中、高須輪中、桑原輪中	5- 3
		2)木曽川、揖斐川	5- 7
5	- 4 深層	也下水	5- 8
	5 - 4 - 1	調査概要	5- 8
	5 - 4 - 2	調査方法	5- 8
	5 - 4 - 3	調査結果	5-8
		1) 長島輪中、高須輪中、桑原輪中	5- 8
5	- 5 土壌	塩分及び地下水塩化物イオン濃度調査	5-11
	5 - 5 - 1	調査概要	5-11
	5 - 5 - 2	調査方法	5-11
	5 - 5 - 3	調査結果	5-11

- 塩分の状況
- 5-1 平成7年度モニタリング調査
- 5-1-1 輪中地域の地下水及び土壌塩化物イオン濃度の調査について 長良川河口堰運用に伴う、長島輪中、高須輪中、桑原輪中地域の塩化物イオン濃度の変 化について、モニタリング調査を実施した。 観測内容は以下のとおり
- 1) 浅層地下水調査(長島、高須、桑原輪中、木曽川左岸、揖斐川右岸地域)
- 2) 深層地下水調査(長島、高須、桑原輪中地域)
- 3) 土壤塩分調查(長島輪中地域)
- 5-1-2 河川の塩化物イオン濃度の調査について 河川内の塩化物イオン濃度調査結果は、「水質及び底質」に記載する。
- 5-2 平成7年度モニタリング計画 モニタリング計画については、表-5-2-1に示す。

表 - 5 - 2 - 1 平成7年度モニタリング計画

颒				
 急				
調查方法等	観測井戸より採水し、 室内にて分析 "		・土壌 室内分析 ・地下水 観測井戸より採水し 室内にて分析	
調查頻度	年2回	年2回""	冬期 1 回	
調査位置	23 部	2 地 山 地 点 1 地 点 1 地 点	1 2 地流	
調香地点	辰岛衛中 高須衛中 桑原輪中 木啓川左岸 揖斐川右岸	長島橋中 (松中、中川) 高須橋中 (五町-2) 黎原橋中 (大須-2)	長島輪中 医良川約6K地点~木曽川約7K地点を結ぶ 測線	堰下流域の河川水の塩化物イオン濃度は「水質」項目で実施する。
宣帝	松屑地下水	梁府地下水	上版塩分及び地下氷	河川水の植化物イオン濃度

5-3 浅層地下水

5-3-1 調査概要

平成7年8月21日から8月24日及び平成8年1月8日から1月10日にかけて、長島輪中23地点、高須輪中8地点、桑原輪中1地点の計32地点、平成7年9月14日及び平成8年1月6日に木曽川1地点、揖斐川1地点の計2地点において浅層地下水塩化物イオン濃度調査を行った。

5-3-2 調査方法

地下水観測井の塩化物イオン濃度調査は、観測井の周辺の塩分を含んだ地下水を寄せ集めるためポンプで連続して地下水を吸い上げ、電気伝導度計により測定値がほぼ安定した段階において試料 (500ml) を採取し、室内分析にて塩化物イオン濃度を分析する。

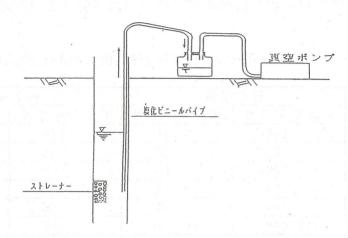


図-5-3-1 地下水の採取方法

5-3-3 調査結果

1)長島輪中、高須輪中、桑原輪中

今回の調査結果について、昨年同時期(平成6年8月及び平成7年1月)に行った塩化物イオン濃度調査の結果の比較表を図-5-3-2~3及び表-5-3-1に示す。

- ・昨年データと比較の結果、長島輪中の北側木曽川沿いの一部で濃度の高くなった地点 が観測された。
- ・観測地点全体では、高くなった地点または低くなった地点が混在しており、全体的には大きな変化があるとは認められなかった。
- ・浅層地下水の塩化物イオン濃度は、河川及び降雨等に密接に関係するので、その変化の原因を検討するために引き続き観測を継続することとする。

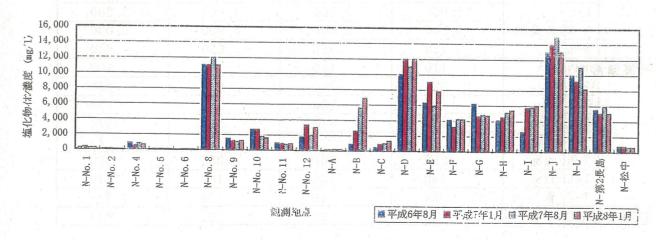


図-5-3-2 塩化物イオン濃度比較グラフ(長島輪中)

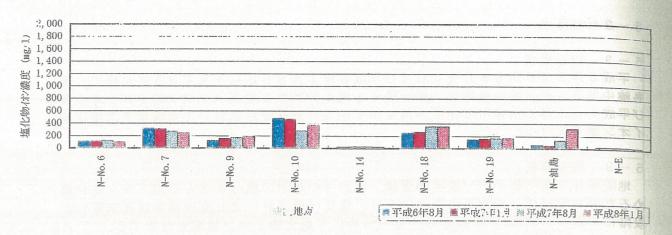


図-5-3-3 塩化物イオン濃度比較グラフ (高須輪中及び桑原輪中)

表-5-3-1 塩化物イオン濃度 (mg/!) 室内試験結果比較

地点		H 6	年度	H 7	年度
		平成6年8月	平成7年1月	平成7年8月	平成8年1月
長島輪中	N-No.1	190	310	170	180
	N-No.2	28	19	15	12
	N-No.4	840	500	790	640
	N-No.5	39	26	30	27
	N-No.6	14	17	36	36 .
	N-No.8	11,000	11,000	12,000	11,000
	N-No.9	1, 500	1,200	1, 100	1,200
	N-No. 10	2, 700	2,700	1,800	1,600
	N-No. 11	940	890	760	840
	N-No. 12	1,800	3, 300	2,000	3,000
	N-A	77	87	120	150
	N-B	890	2,600	5, 600	6,900
	N-C	470	880	970	1,300
	N-D	10,000	12,000	11,000	12,000
	N-E	6, 300	9,000	5, 900	7,800
	N-F	4, 100	3, 200	4, 200	4, 200
	N-G	6, 200	4,600	4,800	4,700
	N-H	4, 100	4, 500	5, 100	5, 400
	N-I	2,600	5, 700	5, 800	6,000
	N-J	13,000	14,000	15,000	13,000
	N-L	10,000	9, 200	11,000	8, 200
	N-第2長島	5, 500	5,000	5, 900	5,000
	N-松中	730	750	650	640
高須輪中	T-No.6	110	110	120	100
	T-No. 7	320	310	270	250
	T-No.9	120	150	170	190
	T-No. 10	480	470	280.	370
	T-No. 14	15	21	23	18
	T-No. 18	250	260	350	350
	T-No. 19	140	150	160	170
	T-油島	54	46	130	320
桑原輪中	K-E	21	22	21	17

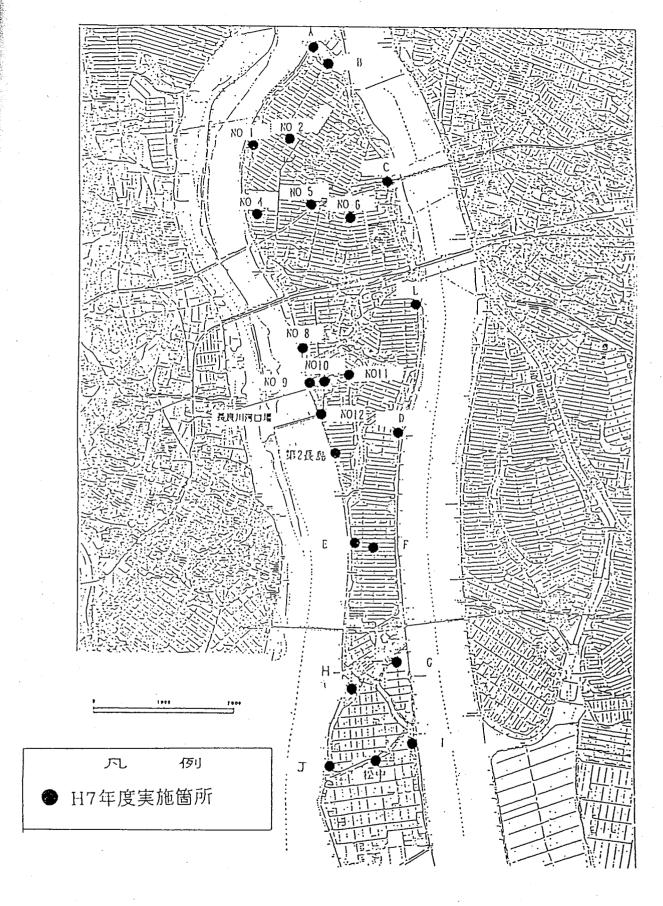


図-5-3-4 浅層地下水塩化物イオン濃度調査位置図 (長島輪中)

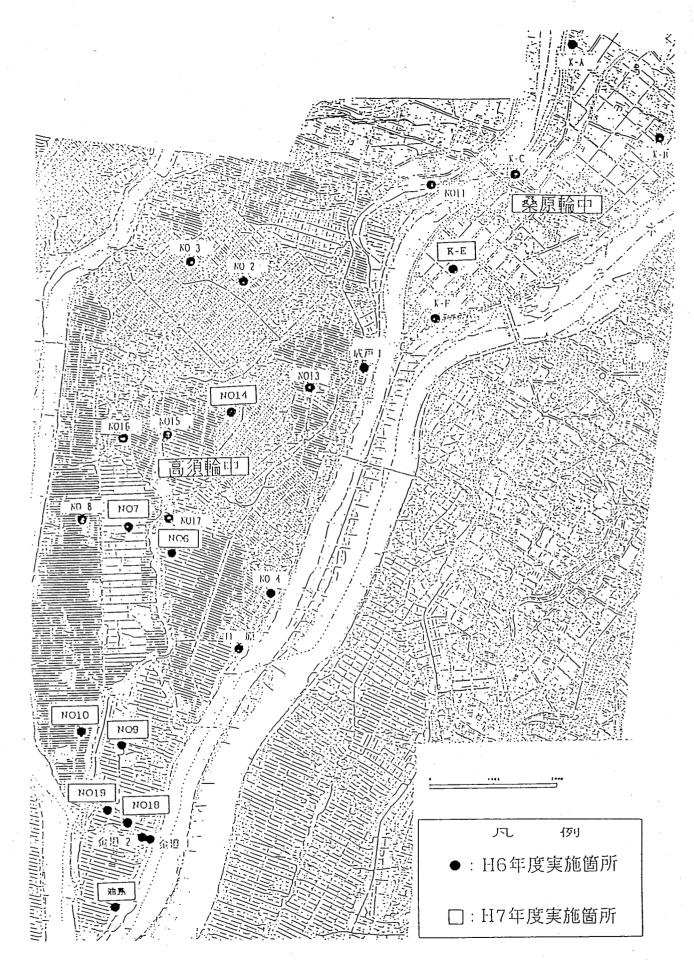


図-5-3-5 浅層地下水塩化物イオン濃度調査位置図 (高須輪中及び桑原輪中) 5-6

2) 木曽川、揖斐川

今回の調査結果について、昨年(平成7年9月)に行った塩化物イオン濃度調査の結果の比較表を表-5-3-2に示す。

・H7年9月データと比較の結果、大きな変化は見られなかった。

表-5-3-2 塩化物イオン濃度 (mg/l) 室内試験結果比較

- 111111111111111111111111111111111111	8/1/至广门区积和不足权
H 7	年 度
平成7年9月	平成8年1月
25. 7	33. 3
119.0	227. 0
	H 7 平成7年9月 25.7

図-5-3-6 浅層地下水塩化物イオン濃度調査位置図 (木曽川及び揖斐川) 5-7

5-4 深層地下水

5-4-1 調査概要

平成7年8月24日から9月1日及び平成8年1月17日から1月22日にかけて、長島輪中2地点、高須輪中1地点、桑原輪中1地点の計5地点で深層地下水塩化物イオン濃度調査を行った。

5-4-2 調查方法

観測地点の揚水施設から水を流した状態を約5分間程度続け、その後試料を採取し、室内分析にて塩化物イオン濃度を測定する。

5-4-3 調査結果

1)長島輪中、高須輪中、桑原輪中

今回の調査結果について、昨年同時期(平成6年8月及び平成7年1月)に行った塩化物イオン濃度調査の結果の比較表を下表に示す。

・昨年データと比較の結果、大きな変化は見られなかった。

表-5-4-1 塩化物イオン濃度 (mg/!) 室内試験結果比較

地	点	H 6	H6年度		<u>- // </u>
	· · · · · · · · · · · · · · · · · · ·	平成6年8月	平成7年1月	平成7年8月	平成8年1月
長島輪中	中 川	165	165	175	177
	松中	2, 100	1,930	1, 940	1,750
高須輪中	五町 - 2	9. 3	9	11.1	9. 9
_ 桑原輪中	大須-2	3. 2	3. 1	3. 1	3. 2

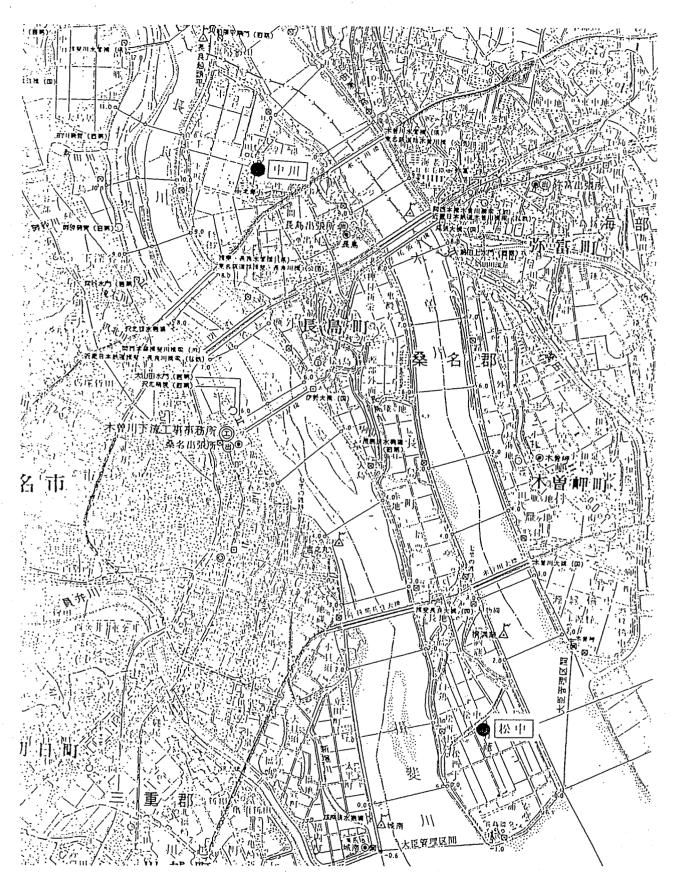


図 5-4-1 深層地下水塩化物イオン濃度調査位置図 (長島輪中)

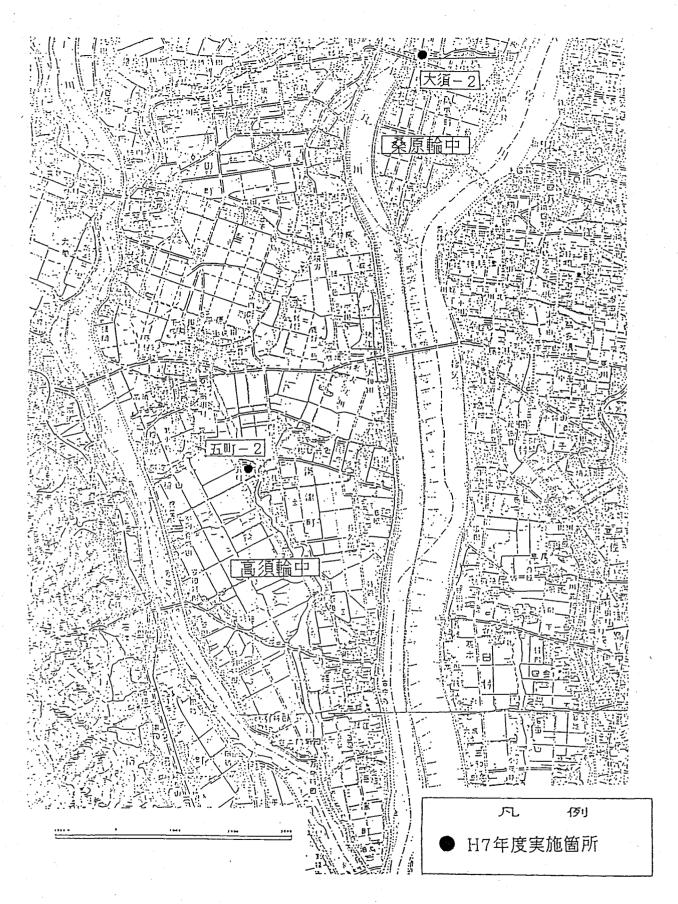


図 - 5 - 4 - 2 深層地下水塩化物イオン濃度調査位置図 (高須輪中及び桑原輪中)

5-5 土壌塩分及び地下水塩化物イオン濃度調査

5-5-1 調査概要

平成7年12月4日から平成8年1月12日にかけて、長島輪中12地点の土壌塩分及 び地下水塩化物イオン濃度調査を行った。調査は長島輪中の長良川(約6.0km)から木曽川 (約7.0km)を結ぶ測線(12地点)で実施した。(図-5-5-3~4)

5-5-2 調査方法

土壌採取は、ボーリングで所定の深度まで掘削し、塩化物ビニール管を内蔵した標準貫 入試験用サンプラーを用いて試料を採取する。

標準貫入試験による土壌採取後、先端部をストレーナー加工したガス管を貫入し、ポンプにて地下水を採取する。

採取した土壌及び地下水の塩化物イオン濃度の測定は、室内分析にて行う。

- ・土 壌……塩素イオン含有試験法にて実施
- ・地下水……上水試験法 (硝酸銀 (クロム酸) 滴定法) にて実施

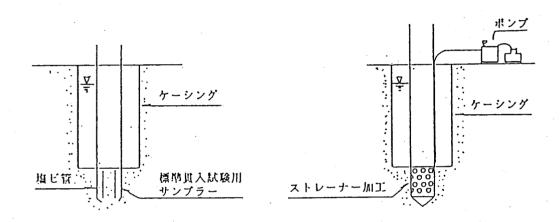


図-5-5-1 土壌の採取方法

図-5-5-2 地下水の採取方法

5-5-3 調査結果

今回の調査結果について、昨年行なった調査の結果の比較表を表-5-5-1 (1) ~ (4) に示す。

- ・土壌及び地下水の塩化物イオン濃度は、大きな変化は見られなかった。
- ・表層部より、深さ2~3mの地下水の塩化物イオン濃度は、No.7及び8の観測地点で高くなっているが、他の地点では同程度かやや低くなる傾向が見られる。

表-5-5-1 (1) 土壌塩分及び地下水塩化物イオン濃度調査結果

H 6 年 度

Η	7	年	度

	No. 1	(平成	7年1月)
深度	土	壌	地下水
m	%		mg/l
3. 0	0.0061		
6.0	0.030		580
7.0	0.080		2, 340
9.0	0.037		
10.0	·		1, 410
11.0	0. 22		11, 900
13.0	0.46		12, 700
15.0	0. 27		8, 700
17.0	0.30		4, 960
19.0	0.31		

	3.7				
	No. 1 (平成8年1月)				
深度	土 壌	地下水			
m	%	mg/l			
3.0	0.0019				
5.0	0.054	1,600			
7.0	0.042	1, 300			
9.0	0.023	680			
10.0					
11.0	0.042	1,600			
13.0	0. 32	9, 300			
15.0	0.31	8,600			
17.0	0.25	7, 200			
19.0	0.31				

			the state of the s
	No. 2	(平成7	7年1月)
深度	土	壌	地下水
m	%		mg/l
3. 0	0.018		390
5. 0	0.10		1, 890
7.0	0.049		1, 750
9.0	0.10		3, 200
11.0	0.42		12, 400
13.0	0.34		6,670
15.0	0.31		8, 520

	No. 2 (平成 8	3年1月)
深度	土 壌	地下水
m	%	mg/l
3.0	0.0029	270
5.0	0.074	1,600
7.0	0.042	1, 400
9.0	0.056	1,600
11.0	0.39	10, 100
13.0	0.31	7, 900
15.0	0.30	7,800

	3.7		
	No. 3	(平成7	7年1月)
深度	土	壌	地下水
m	%		mg/l
1.0	0.014		^
2.0	0.009		230
3.0	0.056		10
4.0			
5. 0	0.13		
7.0	0.064		2, 300
9. 0	0.23		10,000
11.0	0.36		7, 500
13.0	0.41		10,600
15.0	0.41		8, 400
17.0	0.46		
19.0	0. 52		
22.0	0.50		

	No. 3	(平成8	3年1月)
深度	± .	壌	地下水
m	%	•	mg/l
1.0			
2.0	0.011		
3.0	0.019		380
4.0	0.048		
6.0	0.059		1, 100
7.0	0.018		2, 200
9.0	0.17		5, 200
11.0	0.34		8, 300
13.0	0.36		9, 100
15.0	0. 38		8, 800

表-5-5-1 (2) 土壌塩分及び地下水塩化物イオン濃度調査結果

Ι·Ι	6	乍	度

H	7	年	度

			
		No. 4 (平成	7年1月)
	深度	土 壌	地下水
	m	%	mg/l
ĺ	1.0	0.0025	
	1.7		110
	3.0	0. 089	1,710
	5. 0	0.11	3, 280
	7. 0	0. 19	6, 260
	9.0	0. 49	9, 350
	11.0	0.33	7,010
	13.0	0.34	8, 020
	15.0	0. 42	8, 500

	No. 4 (平成)	8年1月)
深度	土 壌	地下水
m	%	mg/l
1.0	-	
2.0	0.0022	
4.0	0.038	1, 300
5.0	0.095	1,600
7.0	0.15	3, 200
9.0	0.40	8,500
11.0	0.35	7, 100
13.0	0.32	7,800
15.0	0.37	7, 500

	No. 5 (平成7	7年1月)
深度	土 壌	地下水
m	%	mg/l
3.0	0.0015	
5. 0	0.0015	
6.0		56
7.0	0.0012	17
9.0	0.013	593
11.0	0.11	3, 220
13.0	0. 14	3, 940
15.0	0. 14	3, 860
17.0	0.11	2, 120

	No.5 (平成8	3年1月)
深度	土 壌	地下水
m _.	%	mg/l
3.0	0.0007	25
5.0	0.0004	
6.0		·
7.0	0.0009	25
9.0	0.0054	370
11.0	0. 09	2, 200
13.0	0.09	3, 800
15.0	0.14	3, 500
17.0	0. 11	2, 500

	No. 6	(平成7	7年1月)	
深度	土	壌	地	下水
m	%		<u>m</u> 8	g / l
1.0	0.001	4		10
3. 0	0.001	2		16
5.0	0. 099]	, 400
7.0	0.20		4	1,830
9.0	0. 29			7, 730
11.0	0, 38		10	700
13.0	0. 52		15	5, 100
15.0	0.51		11	,700

	No. 6	(平成 8	3年1月)
深度	土	壌	地	下 水
m	%		I	ng/l
2.0	0.0005			
3. 0	0.0006			13
5.0	0.0016			2,700
7.0	0.0011			4, 700
9.0	0.26			7, 700
11.0	0.37			8,800
13.0	0.53	· .		13,800
15.0	0.55			11, 900

	No. 7 (平成7	7年1月)
深度	土 壌	地下水
m	%	mg/l
1.0	0. 0058	34
3. 0	0.0013	70
5. 0	0.0013	180
7.0	0.017	525
9.0	0.14	4, 180
11.0	0. 30	9, 540
13.0	0. 40	9,800
15.0	0. 38	5, 110

	No. 7 (平成 8	3年1月)
深度	土 壌	地下水
m	%	mg/l
3.0	0.0016	970
5. 0	0. 001	720
6.0	0.0075	
7.0	0.017	760
9.0	0. 13	2, 500
11.0	0.27	8, 500
13.0	0.39	8, 700
15.0	0. 36	

表-5-5-1 (3) 土壌塩分及び地下水塩化物イオン濃度調査結果

Н	7	年	度

	No. 8 (5	平成7年1月)
深度	土 塩	襄 地 下 水
m	%	mg/l
1.6		96
3. 0		121
4.0	0.066	
õ. 0	0.078	2, 270
7. 0	0.31	9, 350
9.0	0.41	11,500
11.0	0. 48	11, 300
13.0	0.44	10,600
15. 0	0. 42	
17.0	0.41	
19.0	0. 39	

	<u>No.</u> 8	(平成	8年1月)
深度	土	壌	地下水
m	%		mg/l
1.6			
3.0	0.057		240
4.0		\	
5.0	0.034		400
7. 0	0.27		9, 200
9.0	0.35		10, 500
11.0	0.37		10,600
13.0	0.46		

	No. 9	(平成7	7年1月)
深度	土	壌	地下水
m	%		ng/l
2.0	0.030		32
3. 0	0.18		7, 390
5.0	0.37		12,000
7.0	0.34		2, 420
9.0	0.38		9, 510
11.0	0.34		9, 580
13.0	0.36		
15.0	0.37		

	No. 9 (平成	8年1月)
深度	土 壌	地下水
m	%	mg/l
1.0	0.0004	
3. 0	0.0013	12
5. 0	0.42	10,000
7.0	0.33	3, 700
9. 0	0.35	8, 100
11.0	0. 32	8,900
13.0	0.36	,
15.0	0.34	:

	37 10 (=	D
	No. 10 (平月	<u> 7 年 1 月)</u>
深度	土 壤	地下水
m	%	mg/l
1.0	0.16	5, 070
3. 0	0. 19	9, 160
5.0	0.39	13, 100
7.0	0.43	12, 400
9.0	0.39	11, 900
11.0	0.53	9, 430
13.0	0. 54	12, 700

	N 0 10 (V)	0年1日)
	No. 10 (平成	8年1月)
深度	土 壌	地下水
m	%	mg/l
3. 0	0.22	3,600
5.0	0.37	7, 200
7.0	0.41	11,000
8.0	0.41	
9. 0	0.39	11,000
11.0	0.56	9, 300
13.0	0.54	,

	No. 11	(平成)	7年1月)
深度	土	壌	地下水、
m	%		mg/l
1.0	0.11		1,900
3.0	0.10		2, 420
4.0			
5.0	. 0.10		3,610
7.0	0.30		8, 110
9.0	0.16		13, 700
11.0	0. 43		11,600
13.0	0.50		13, 600
15.0	0.54		12, 900

	No. 11	(平成 8	3年1月)
深度	土、	壤	地下水
m	:- %		mg/l
1.0	0.023		1, 300
3.0	0.017		
4.0	0.10		1, 400
5. 0	0.10		2,500
7. 0	0.16		9, 700
9.0	0.46		11,000
11.0	0.41		11,700
13.0	0. 56		12, 100

表-5-5-1 (4) 土壌塩分及び地下水塩化物イオン濃度調査結果

H 6 年 度

H 7 年 度

	No. 12		7年1月)
深度	土	壌	地下水
m	%		mg/l
3.0	0.17		7, 170
5.0	0. 10	_	4, 470
7.0	0.098		3, 260
9.0	0.049		4, 110
11.0	0.41		12, 400
13.0	0. 36		12, 400
15.0	0. 25		10, 300
17.0	0. 53		

	No. 12	(平成8	3年1月)
深度	土	壌	地下水
m	%		mg/!
3.0	0.054		1,900
5.0	0.20		6, 200
7.0	0.11		5, 500
9.0	0.18		6, 800
11.0	0.039		8, 600
13.0	0.071		8, 800
15.0	0.42		11,600
17.0	0.54		

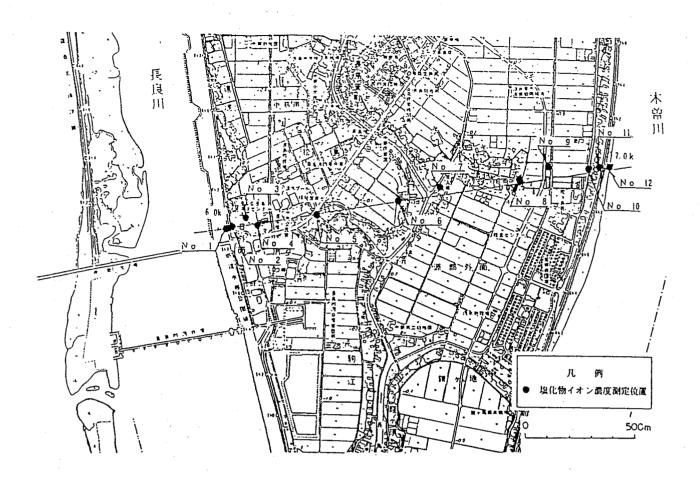


図-5-5-3 土壌塩分及び地下水塩化物イオン濃度調査位置図(長島輪中)

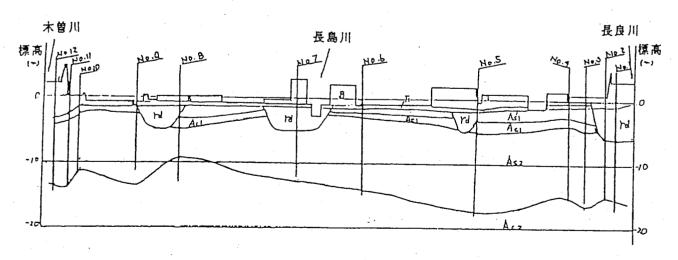


図-5-5-4 長良川~木曽川模式断面図