令和7年度 土木工事設計材料単価表 (令和7年11月1日以降適用)

中部地方整備局

企画部技術管理課

土木工事設計材料単価表について

1. はじめに

「土木工事設計材料単価表」は、中部地方整備局が発注する土木工事の積算に用いる材料単価(以下、土木工事設計材料単価という。)のうち、中部地方整備局が独自の調査に基づき定めた主要材料単価の一覧表です。

2. 内容

(一財)建設物価調査会及び(一財)経済調査会(以下、物価調査機関という。)から市販されている「月刊 建設物価」、「Web 建設物価」、「月刊 積算資料」及び「積算資料電子版」(以下、物価資料という。)には、実際の取引価格が掲載されており、これらに掲載されていない材料について、市場取り引き価格の実態調査を実施し、その結果を基に設定した材料単価を「土木工事設計材料単価表」に掲載しています。

3. 十木工事設計材料単価表の取扱いについて

- ・本単価表を無断転載・複写や電子媒体等に加工することを禁じます。
- ・本単価表の使用、あるいは使用不能における結果として生じた直接的・間接的な損害・損失等に関しては、一切の責任を負いかねます。

4. その他

資料のなかで取り引き事例が著しく少ない材料については、単価を設定していない地区があり、これらについては「土木工事設計材料単価表」の中では「一」になっています。

本資料掲載の土木工事設計材料単価の積算への適用は、表紙に記載している年月以降に発注する工事となります。

種 別	生コンクリート											I	中部地方整体	備局 単位:円
						長野	2 0				岐阜	2 1		
	品目	規格	単位	503長 伊那市	504長 飯田市			507長 南木曽	509長 塩尻市	102岐 藤橋南	103岐 坂内村		105岐 根尾中	備考
	生コンクリート 高炉	3-25 C=170以上	m 3							24, 600	24, 600	38, 000	35, 000	
	生コンクリート 高炉	18-8-40 C=240以上	m 3								25, 000	38, 400	35, 400	W/C=60%
	生コンクリート 高炉	21-8-25 W/C=60%	m 3								25, 000	38, 400	35, 400	
	生コンクリート 高炉	30-18-25 C=350以上	m 3											
	生コンクリート 高炉	30-8-25 (20) 高性能AE減水剤含む	m 3											高性能AE減水剤≧1.5kg/m3
	生コンクリート 高炉	36-12-25 (20) 高性能AE減水剤含む	m 3											W/C=55%
	生コンクリート	24-15-25 (20)	m 3											
	生コンクリート	24-18-25 (20)	m 3											
	生コンクリート	18-15-25 高炉 (土木営繕)	m 3			26, 000								
	生コンクリート	21-15-25 高炉 (土木営繕)	m 3			26, 350								
	生コンクリート	21-18-25 高炉(土木営繕)	m 3			26, 500								
	生コンクリート	24-15-25 高炉 (土木営繕)	m 3			26, 850								
	生コンクリート	24-18-25 高炉(土木営繕)	m 3			27, 000								
	生コンクリート	27-15-25 高炉(土木営繕)	m 3											
	生コンクリート	27-18-25 高炉 (土木営繕)	m 3			27, 300								
	生コンクリート	30-8-25 (20) 高性能AE減水剤含む	m 3		28, 800	29, 400								高性能AE減水剤≧1.5kg/m3
	生コンクリート	36-8-25 (20) 高性能AE減水剤含む	m 3											高性能AE減水剤≧1.5kg/m3
	生コンクリート	30-12-25 (20) 高性能AE減水剤含む	m 3											W/C=55%
	生コンクリート	24-12-25 (20) 膨張材入り	m 3											W/C=55%
	生コンクリート	40-12-25 (20) 膨張材入り	m 3											W/C=55%
	生コンクリート	50-12-25 (20) 膨張材入り	m 3											W/C=55%
	生コンクリート 早強	40-12-25 (20) 高性能AE減水剤含む	m 3											W/C=55%
	生コンクリート割増額	持込範囲	k m	10	10	10		10			5	10	10	
	生コンクリート割増額	距離割増 1 k m増す毎に加算する金額 円/k m	1 k m	100	100	100		200						
	生コンクリート割増額	小型車割増 4 t 車以下で加算 円/m3	m 3			2,000					2, 500	2, 500	2, 500	

種 別	生コンクリート												中部地方整体	備局 単位:円
								岐阜	2 1					
	品目	規格	単位	106岐 根尾南	107岐 揖斐川	109岐 大垣市	1 1 0 岐 岐阜市			123岐 美濃加	1 2 4 岐 御嵩町	125岐 八百津	126岐 自川中	備考
	生コンクリート 高炉	3-25 C=170以上	m 3	35, 000										
	生コンクリート 高炉	18-8-40 C=240以上	m 3	35, 400										W/C=60%
	生コンクリート 高炉	2 1 - 8 - 2 5 W/C = 6 0 %	m 3	35, 400										
	生コンクリート 高炉	30-18-25 C=350以上	m 3			21, 700	21, 700	23, 200		21, 200	21, 200		26, 200	
	生コンクリート 高炉	30-8-25(20) 高性能AE減水剤含む	m 3											高性能AE減水剤≧1.5kg/m3
	生コンクリート 高炉	36-12-25 (20) 高性能AE減水剤含む	m 3											W/C=55%
	生コンクリート	24-15-25 (20)	m 3											
	生コンクリート	24-18-25 (20)	m 3											
	生コンクリート	18-15-25 高炉(土木営繕)	m 3											
	生コンクリート	21-15-25 高炉 (土木営繕)	m 3											
	生コンクリート	21-18-25 高炉 (土木営繕)	m 3											
	生コンクリート	24-15-25 高炉 (土木営繕)	m 3											
	生コンクリート	24-18-25 高炉 (土木営繕)	m 3											
	生コンクリート	27-15-25 高炉 (土木営繕)	m 3											
	生コンクリート	27-18-25 高炉 (土木営繕)	m 3											
	生コンクリート	30-8-25(20) 高性能AE減水剤含む	m 3		25, 800	22, 800	22, 800	24, 300		22, 300	22, 300		27, 200	高性能AE減水剤≧1.5kg/m3
	生コンクリート	36-8-25 (20) 高性能AE減水剤含む	m 3			23, 900	23, 900	25, 400		23, 400	23, 400		27, 800	高性能AE減水剤≧1.5kg/m3
	生コンクリート	30-12-25 (20) 高性能AE減水剤含む	m 3											W/C=55%
	生コンクリート	24-12-25 (20) 膨張材入り	m 3											W/C=55%
	生コンクリート	40-12-25 (20) 膨張材入り	m 3											W/C=55%
	生コンクリート	50-12-25 (20) 膨張材入り	m 3											W/C=55%
	生コンクリート 早強	40-12-25 (20) 高性能AE減水剤含む	m 3											W/C=55%
	生コンクリート割増額	持込範囲	k m	10	20	20	20	20		20	20	20	20	
	生コンクリート割増額	距離割増 1 k m増す毎に加算する金額 円/k m	1 k m											
	生コンクリート割増額	小型車割増 4 t 車以下で加算 円/m3	m 3	2, 500										

種 別 生コンクリート 中部地方整備局 単位:円 岐阜21 品 目 規 格 単 位 考 131岐 132岐 133岐 134岐 137岐 140岐 146岐 147岐 156岐 157岐 下呂町 多治見 瑞浪市 恵那南 中津川 八幡外 白鳥南 金山町 高山西 久々野 生コンクリート 高炉 3-25 C=170以上 m 3 生コンクリート 高炉 18-8-40 C=240以上 27,000 W/C = 6.0 %m 3 27,000 生コンクリート 高炉 21-8-25 W/C=60% m 3 生コンクリート 高炉 30-18-25 C=350以上 m 3 28, 100 28, 100 生コンクリート 高炉 30-8-25 (20) 高性能AE減水剤含む 高性能AE減水剤≥1.5kg/m3 m 3 36-12-25 (20) 高性能AE減水剤含む W/C = 5.5%生コンクリート 高炉 m 3 生コンクリート 24-15-25 (20) m 3 27, 200 生コンクリート 24-18-25 (20) 27, 200 m 3 生コンクリート 26,600 18-15-25 高炉(土木営繕) m 3 生コンクリート 21-15-25 高炉(土木営繕) m 3 26, 900 生コンクリート 21-18-25 高炉(土木営繕) 26,900 m 3 生コンクリート 24-15-25 高炉(土木営繕) 27, 200 m 3 生コンクリート 24-18-25 高炉(土木営繕) m 3 27, 200 生コンクリート 27-15-25 高炉(土木営繕) m 3 27, 500 生コンクリート 27-18-25 高炉(土木営繕) m 3 27,500 生コンクリート 30-8-25 (20) 高性能AE減水剤含む m 3 22, 300 26,800 28, 050 28, 050 28, 400 28, 400 28, 100 27, 100 28, 700 28,700 高性能AE減水剤≥1.5kg/m3 生コンクリート 36-8-25 (20) 高性能AE減水剤含む 29, 200 29, 200 高性能AE減水剤≥1.5kg/m3 m 3 生コンクリート 30-12-25 (20) 高性能AE減水剤含む W/C = 5.5%m 3 生コンクリート 24-12-25 (20) 膨張材入り W/C = 5.5%m 3 生コンクリート 40-12-25 (20) 膨張材入り W/C = 5.5%m 3 生コンクリート 50-12-25 (20) 膨張材入り m 3 W/C = 5.5%生コンクリート 早強 40-12-25 (20) 高性能AE減水剤含む W/C = 5.5%m 3 生コンクリート割増額 持込範囲 k m 15 生コンクリート割増額 距離割増 1km増す毎に加算する金額 円/km 1 k m 生コンクリート割増額 小型車割増 4 t 車以下で加算 円/m3 1,500 m 3

種 別 生コンクリート 中部地方整備局 単位:円 岐阜21 静岡 2 2 品 目 規 格 単 位 考 162岐 166岐 201静 205静 207静 208静 209静 210静 212静 214静 神岡西 古川町 下田市 中伊豆 沼津市 伊豆国 御殿未 小山未 富士未 富士川 生コンクリート 高炉 3-25 C=170以上 m 3 生コンクリート 高炉 18-8-40 C=240以上 W/C = 6.0%m 3 生コンクリート 高炉 21-8-25 W/C=60% m 3 生コンクリート 高炉 30-18-25 C=350以上 m 3 生コンクリート 高炉 30-8-25 (20) 高性能AE減水剤含む 高性能AE減水剤≥1.5kg/m3 m 3 36-12-25 (20) 高性能AE減水剤含む 32,000 29,600 29, 900 29,900 W/C = 5.5%生コンクリート 高炉 35, 700 30, 300 m 3 生コンクリート 24-15-25 (20) m 3 生コンクリート 24-18-25 (20) m 3 生コンクリート 18-15-25 高炉(土木営繕) m 3 生コンクリート 21-15-25 高炉(土木営繕) m 3 生コンクリート 21-18-25 高炉(土木営繕) m 3 生コンクリート 24-15-25 高炉(土木営繕) m 3 生コンクリート 24-18-25 高炉(土木営繕) m 3 生コンクリート 27-15-25 高炉(土木営繕) m 3 生コンクリート 27-18-25 高炉(土木営繕) m 3 生コンクリート 30-8-25 (20) 高性能AE減水剤含む m 3 28, 700 28,700 33, 700 30, 500 28, 100 28, 400 28, 400 高性能AE減水剤≥1.5kg/m3 生コンクリート 36-8-25 (20) 高性能AE減水剤含む 高性能AE減水剤≥1.5kg/m3 m 3 30-12-25 (20) 高性能AE減水剤含む W/C = 5.5%生コンクリート m 3 33, 700 30, 500 28, 100 28, 800 28, 400 28, 400 生コンクリート 24-12-25 (20) 膨張材入り W/C = 5.5%m 3 生コンクリート 40-12-25 (20) 膨張材入り W/C = 5.5%m 3 生コンクリート 50-12-25 (20) 膨張材入り m 3 W/C = 5.5%生コンクリート 早強 40-12-25 (20) 高性能AE減水剤含む 38, 400 34, 300 31, 900 32, 200 32, 200 W/C = 5.5%m 3 32,600 生コンクリート割増額 持込範囲 15 k m 生コンクリート割増額 距離割増 1km増す毎に加算する金額 円/km 1 k m 生コンクリート割増額 小型車割増 4 t 車以下で加算 円/m3 3,000 m 3

種 別 生コンクリート 中部地方整備局 単位:円 静岡22 品 目 規 格 単 位 考 215静 216静 217静 220静 221静 224静 225静 226静 228静 230静 芝川町 静岡市 静岡中 焼津市 島田市 吉田町 掛川市 袋井市 天竜市 水窪町 生コンクリート 高炉 3-25 C=170以上 m 3 生コンクリート 高炉 18-8-40 C=240以上 39,600 W/C = 6.0 %m 3 生コンクリート 高炉 21-8-25 W/C=60% m 3 生コンクリート 高炉 30-18-25 C=350以上 m 3 生コンクリート 高炉 30-8-25 (20) 高性能AE減水剤含む 高性能AE減水剤≥1.5kg/m3 m 3 36-12-25 (20) 高性能AE減水剤含む W/C = 5.5%生コンクリート 高炉 m 3 生コンクリート 24-15-25 (20) m 3 生コンクリート 24-18-25 (20) m 3 生コンクリート 18-15-25 高炉(土木営繕) m 3 生コンクリート 21-15-25 高炉(土木営繕) m 3 35, 800 生コンクリート 21-18-25 高炉(土木営繕) m 3 35, 800 生コンクリート 24-15-25 高炉(土木営繕) 36, 400 m 3 生コンクリート 24-18-25 高炉(土木営繕) m 3 36, 400 生コンクリート 27-15-25 高炉(土木営繕) m 3 生コンクリート 27-18-25 高炉(土木営繕) m 3 高性能AE減水剤≧1.5kg/m3 生コンクリート 30-8-25 (20) 高性能AE減水剤含む m 3 生コンクリート 36-8-25 (20) 高性能AE減水剤含む 高性能AE減水剤≥1.5kg/m3 m 3 30-12-25 (20) 高性能AE減水剤含む W/C = 5.5%生コンクリート m 3 生コンクリート 24-12-25 (20) 膨張材入り 40,700 27,000 27,000 28,000 W/C = 5.5%m 3 生コンクリート 40-12-25 (20) 膨張材入り W/C = 5.5%m 3 生コンクリート 50-12-25 (20) 膨張材入り m 3 W/C = 5.5%生コンクリート 早強 40-12-25 (20) 高性能AE減水剤含む W/C = 5.5%m 3 生コンクリート割増額 持込範囲 k m 生コンクリート割増額 距離割増 1km増す毎に加算する金額 円/km 1 k m 生コンクリート割増額 小型車割増 4 t 車以下で加算 円/m3 3,000 m 3 5,000

種 別 生コンクリート 中部地方整備局 単位:円 静岡22 愛知23 品 目 規 格 単 位 考 231静 232静 233静 301愛 302愛 303愛 304愛 305愛 308愛 310愛 浜松市 引佐町 湖西市 名古屋 春日井 一宮市 津島市 大府市 岡崎市 安城市 生コンクリート 高炉 3-25 C=170以上 m 3 生コンクリート 高炉 18-8-40 C=240以上 W/C = 6.0%m 3 生コンクリート 高炉 21-8-25 W/C=60% m 3 生コンクリート 高炉 30-18-25 C=350以上 m 3 生コンクリート 高炉 30-8-25 (20) 高性能AE減水剤含む 19,850 19,850 高性能AE減水剤≥1.5kg/m3 m 3 36-12-25 (20) 高性能AE減水剤含む W/C = 5.5%生コンクリート 高炉 m 3 生コンクリート 24-15-25 (20) m 3 生コンクリート 24-18-25 (20) m 3 生コンクリート 18-15-25 高炉(土木営繕) m 3 生コンクリート 21-15-25 高炉(土木営繕) m 3 生コンクリート 21-18-25 高炉(土木営繕) m 3 生コンクリート 24-15-25 高炉(土木営繕) m 3 生コンクリート 24-18-25 高炉(土木営繕) m 3 生コンクリート 27-15-25 高炉(土木営繕) m 3 生コンクリート 27-18-25 高炉(土木営繕) m 3 生コンクリート 30-8-25 (20) 高性能AE減水剤含む m 3 20,900 20,900 高性能AE減水剤≥1.5kg/m3 21,050 生コンクリート 36-8-25 (20) 高性能AE減水剤含む 21,050 高性能AE減水剤≥1.5kg/m3 m 3 30-12-25 (20) 高性能AE減水剤含む W/C = 5.5%生コンクリート m 3 生コンクリート 24-12-25 (20) 膨張材入り W/C = 5.5%m 3 生コンクリート 40-12-25 (20) 膨張材入り 26, 350 W/C = 5.5%m 3 26, 350 生コンクリート 50-12-25 (20) 膨張材入り m 3 28, 900 28, 900 W/C = 5.5%生コンクリート 早強 40-12-25 (20) 高性能AE減水剤含む W/C = 5.5%m 3 生コンクリート割増額 持込範囲 k m 生コンクリート割増額 距離割増 1km増す毎に加算する金額 円/km 1 k m 生コンクリート割増額 小型車割増 4 t 車以下で加算 円/m3 3,000 3,000 m 3

種 別	生コンクリート												中部地方整	備局 単位:	円
		10 16	W 11.				愛知 2 3					三重 2 4		/	+ *
	品目	規格	単位	3 1 1 愛 豊田市	3 1 2 愛 足助町	313愛 豊橋市	3 1 5 愛 新城市	316愛 設楽町	3 1 7 愛 豊根村	3 2 6 愛 知多市	401三 桑名市	402三 四日市	403三 鈴鹿市	備	考
	生コンクリート 高炉	3-25 C=170以上	m 3												
	生コンクリート 高炉	18-8-40 C=240以上	m 3							18, 700				W/C=60%	
	生コンクリート 高炉	2 1 - 8 - 2 5 W/C = 6 0 %	m 3							18, 300					
	生コンクリート 高炉	30-18-25 C=350以上	m 3							19, 100	24, 000				
	生コンクリート 高炉	30-8-25 (20) 高性能AE減水剤含む	m 3							20, 350				高性能AE減水剤≥	≟1.5kg/m3
	生コンクリート 高炉	36-12-25 (20) 高性能AE減水剤含む	m 3											W/C=55%	
	生コンクリート	2 4 - 1 5 - 2 5 (2 0)	m 3							18, 300					
	生コンクリート	24-18-25 (20)	m 3							18, 300					
	生コンクリート	18-15-25 高炉 (土木営繕)	m 3							17, 500					
	生コンクリート	21-15-25 高炉 (土木営繕)	m 3							17, 900					
	生コンクリート	21-18-25 高炉 (土木営繕)	m 3							17, 900					
	生コンクリート	24-15-25 高炉 (土木営繕)	m 3							18, 300					
	生コンクリート	24-18-25 高炉 (土木営繕)	m 3							18, 300					
	生コンクリート	27-15-25 高炉(土木営繕)	m 3							18, 700					
	生コンクリート	27-18-25 高炉(土木営繕)	m 3							18, 700					
	生コンクリート	30-8-25 (20) 高性能AE減水剤含む	m 3	21, 900						20, 350	25, 100	28, 100	31, 000	高性能AE減水剤≧	1.5kg/m3
	生コンクリート	36-8-25 (20) 高性能AE減水剤含む	m 3							21, 550				高性能AE減水剤≧	1.5kg/m3
	生コンクリート	3 0-1 2-2 5 (2 0) 高性能AE減水剤含む	m 3											W/C=55%	
	生コンクリート	24-12-25 (20) 膨張材入り	m 3											W/C=55%	
	生コンクリート	40-12-25 (20) 膨張材入り	m 3							22, 550				W/C=55%	
	生コンクリート	50-12-25 (20) 膨張材入り	m 3											W/C=55%	
	生コンクリート 早強	40-12-25 (20) 高性能AE減水剤含む	m 3											W/C=55%	
	生コンクリート割増額	持込範囲	k m	15		15			10	20					
	生コンクリート割増額	距離割増 1 k m増す毎に加算する金額 円/k m	1 k m												
	生コンクリート割増額	小型車割増 4 t 車以下で加算 円/m3	m 3						3,000						

種 別 生コンクリート 中部地方整備局 単位:円 三重24 品 目 規 格 単 位 考 404三 405三 407三 408三 409三 4 1 2 三 413三 421三 422三 423三 紀伊長 津市 久居市 松阪市 大台町 飯高町 伊勢市 大宮町 尾鷲北 尾鷲南 生コンクリート 高炉 3-25 C=170以上 m 3 31,000 生コンクリート 高炉 18-8-40 C=240以上 32,000 32,900 32,900 W/C = 6.0 %m 3 32,000 生コンクリート 高炉 21-8-25 W/C=60% m 3 生コンクリート 高炉 30-18-25 C=350以上 m 3 生コンクリート 高炉 30-8-25 (20) 高性能AE減水剤含む 高性能AE減水剤≥1.5kg/m3 m 3 36-12-25 (20) 高性能AE減水剤含む W/C = 5.5%生コンクリート 高炉 m 3 生コンクリート 24-15-25 (20) m 3 生コンクリート 24-18-25 (20) m 3 生コンクリート 18-15-25 高炉(土木営繕) m 3 生コンクリート 21-15-25 高炉(土木営繕) m 3 生コンクリート 21-18-25 高炉(土木営繕) m 3 生コンクリート 24-15-25 高炉(土木営繕) m 3 生コンクリート 24-18-25 高炉(土木営繕) m 3 生コンクリート 27-15-25 高炉(土木営繕) m 3 生コンクリート 27-18-25 高炉(土木営繕) m 3 生コンクリート 30-8-25 (20) 高性能AE減水剤含む m 3 29, 100 29, 100 29, 100 33,600 33,600 40,900 40,900 40,900 高性能AE減水剤≥1.5kg/m3 生コンクリート 36-8-25 (20) 高性能AE減水剤含む 高性能AE減水剤≥1.5kg/m3 m 3 30-12-25 (20) 高性能AE減水剤含む W/C = 5.5%生コンクリート m 3 生コンクリート 24-12-25 (20) 膨張材入り W/C = 5.5%m 3 生コンクリート 40-12-25 (20) 膨張材入り W/C = 5.5%m 3 生コンクリート 50-12-25 (20) 膨張材入り m 3 W/C = 5.5%生コンクリート 早強 40-12-25 (20) 高性能AE減水剤含む W/C = 5.5%m 3 生コンクリート割増額 持込範囲 10 k m 20 15 生コンクリート割増額 距離割増 1km増す毎に加算する金額 円/km 1 k m 生コンクリート割増額 小型車割増 4 t 車以下で加算 円/m3 3,000 4,000 m 3 4,000

種 別	生コンクリート								中部地方整体	備局 単位:円
	品目	規格	単位		三重					
	DIL H	//L 111	平 匹	424三 熊野南	425三 熊野外	426三 御浜南	4 2 7 三 上野市			WHI AT
	生コンクリート 高炉	3-25 C=170以上	m 3							
	生コンクリート 高炉	18-8-40 C=240以上	m 3			32, 900				W/C=60%
	生コンクリート 高炉	2 1 - 8 - 2 5 W/C = 6 0 %	m 3							
	生コンクリート 高炉	30-18-25 C=350以上	m 3							
	生コンクリート 高炉	30-8-25 (20) 高性能AE減水剤含む	m 3							高性能AE減水剤≧1.5kg/m3
	生コンクリート 高炉	36-12-25 (20) 高性能AE減水剤含む	m 3							W/C=55%
	生コンクリート	2 4 - 1 5 - 2 5 (2 0)	m 3							
	生コンクリート	2 4 - 1 8 - 2 5 (20)	m 3							
	生コンクリート	18-15-25 高炉 (土木営繕)	m 3							
	生コンクリート	21-15-25 高炉 (土木営繕)	m 3							
	生コンクリート	21-18-25 高炉 (土木営繕)	m 3							
	生コンクリート	24-15-25 高炉 (土木営繕)	m 3							
	生コンクリート	24-18-25 高炉 (土木営繕)	m 3							
	生コンクリート	27-15-25 高炉 (土木営繕)	m 3							
	生コンクリート	27-18-25 高炉 (土木営繕)	m 3							
	生コンクリート	30-8-25 (20) 高性能AE減水剤含む	m 3	40, 900	40, 900	40, 900				高性能AE減水剤≥1.5kg/m3
	生コンクリート	36-8-25 (20) 高性能AE減水剤含む	m 3							高性能AE減水剤≥1.5kg/m3
	生コンクリート	30-12-25 (20) 高性能AE減水剤含む	m 3							W/C=55%
	生コンクリート	24-12-25 (20) 膨張材入り	m 3							W/C=55%
	生コンクリート	40-12-25 (20) 膨張材入り	m 3							W/C=55%
	生コンクリート	50-12-25 (20) 膨張材入り	m 3							W/C=55%
	生コンクリート 早強	4 0-1 2-2 5 (20) 高性能AE減水剤含む	m 3							W/C=55%
	生コンクリート割増額	持込範囲	k m	10	10	10				
	生コンクリート割増額	距離割増 1 k m増す毎に加算する金額 円/k m	1 k m							
	生コンクリート割増額	小型車割増 4 t 車以下で加算 円/m3	m 3			4,000				

材料 単価 【設計】

種 別	生コンクリート											I	中部地方整体	備局 単位:	円
						長野:	2.0				岐阜	2.1			
	品目	規格	単位	503長 伊那市	504長 飯田市		506長 阿智村	507長 南木曽	509長 塩尻市	102岐 藤橋南		104岐根尾北	105岐 根尾中	備	考
	生コンクリート	18-15-25 (20)	m 3			26, 000									
	生コンクリート	18-18-25 (20)	m 3												
	生コンクリート	21-15-25 (20)	m 3			26, 350									
	生コンクリート	21-18-25 (20)	m 3												
	生コンクリート	24-8-25 (20)	m 3			26, 500	26, 300		25, 800					W/C=55%	
	生コンクリート	24-12-25 (20)	m 3			26, 700	26, 500		25, 800		25, 400			W/C=55%	
	生コンクリート	30-8-25 (20)	m 3			27, 200	27, 000		26, 600					W/C=55%	
	生コンクリート	30-12-25 (20)	m 3			27, 400	27, 200		26, 600					W/C=55%	
	生コンクリート	曲げ 4.5-2.5-40	m 3			27, 150	26, 950		27, 700					$C = 280 \sim 35$	0
	生コンクリート	18-15-40 C=270以上	m 3											W/C=60%	
	生コンクリート	36-12-25 (20)	m 3											W/C=55%	
	生コンクリート 高炉	18-8-25 (20)	m 3			26, 050	25, 850		25, 400	25, 000	25, 000	38, 400	35, 400	W/C=60%	
	生コンクリート 高炉	21-8-25 (20)	m 3				26, 300		25, 800	25, 400	25, 400	38, 700	35, 700	W/C=55%	
	生コンクリート 高炉	21-12-25 (20)	m 3											W/C=55%	
	生コンクリート 高炉	24-8-25 (20)	m 3			26, 500	26, 300		25, 800	25, 400	25, 400	38, 700	35, 700	W/C=55%	
	生コンクリート 高炉	2 4 - 1 2 - 2 5 (2 0)	m 3			26, 700	26, 500		25, 800					W/C=55%	
	生コンクリート 高炉	30-15-25 (20) C=350	m 3			27, 900								C = 3 5 0	
	生コンクリート 高炉	18-3-40	m 3							25, 000	25, 000	38, 400	35, 400	W/C=60%	
	生コンクリート 高炉	18-5-40	m 3			25, 850	25, 650		25, 200	25, 000	25, 000	38, 400	35, 400	W/C=60%	
	生コンクリート 高炉	18-8-40	m 3			25, 950	25, 750		25, 200	25, 000	25, 000	38, 400	35, 400	W/C=60%	
	生コンクリート 高炉	18-12-40	m 3											W/C=55%	
	生コンクリート 高炉	21-3-40	m 3								25, 000	38, 400	35, 400	W/C=60%	
	生コンクリート 高炉	21-5-40	m 3			25, 850	25, 650		25, 200		25, 000	38, 400	35, 400	W/C=60%	
	生コンクリート 高炉	21-8-40	m 3			25, 950	25, 750		25, 200		25, 000	38, 400	35, 400	W/C=60%	
	生コンクリート 高炉	2 4 - 5 - 4 0	m 3			26, 150	25, 950		25, 600		25, 400	38, 700	35, 700	W/C=55%	

種 別 生コンクリート 中部地方整備局 単位:円 岐阜21 品 目 規 格 単 位 考 106岐 107岐 109岐 110岐 119岐 120岐 123岐 124岐 125岐 126岐 美濃中 根尾南 揖斐川 大垣市 岐阜市 美濃加 御嵩町 八百津 白川中 生コンクリート 18-15-25 (20) m 3 生コンクリート 18 - 18 - 25 (20)m 3 生コンクリート 21-15-25 (20) m 3 生コンクリート 21-18-25 (20) m 3 生コンクリート 24-8-25 (20) W/C = 5.5%m 3 生コンクリート 23, 800 21, 200 25, 500 W/C = 5.5%24-12-25 (20) m 3 21, 200 20, 300 生コンクリート 30-8-25 (20) m 3 W/C = 5.5%生コンクリート 30-12-25 (20) m 3 24, 700 21, 700 21, 700 W/C = 5.5%生コンクリート 曲げ 4.5-2.5-40 $C = 280 \sim 350$ m 3 生コンクリート 18-15-40 C=270以上 m 3 W/C = 6.0%生コンクリート 36-12-25 (20) W/C = 5.5%m 3 生コンクリート 高炉 18-8-25 (20) 35, 400 W/C = 6.0%m 3 生コンクリート 高炉 21-8-25 (20) m 3 35, 700 W/C = 5.5%生コンクリート 高炉 21-12-25 (20) m 3 W/C = 5.5%生コンクリート 高炉 24-8-25 (20) m 3 35, 700 W/C = 5.5%生コンクリート 高炉 24-12-25(20)m 3 23, 800 20,800 20,800 20, 300 25, 500 W/C = 5.5%生コンクリート 高炉 30-15-25(20) C=350 C = 350m 3 生コンクリート 高炉 18-3-40 35, 400 W/C = 6.0%m 3 生コンクリート 高炉 18 - 5 - 4035, 400 W/C = 6.0%m 3 生コンクリート 高炉 W/C = 6.0%18-8-40 35, 400 m 3 生コンクリート 高炉 18-12-40m 3 W/C = 5.5%生コンクリート 高炉 21 - 3 - 4035, 400 W/C = 6.0%m 3 生コンクリート 高炉 21 - 5 - 4035, 400 W/C = 6.0%m 3 生コンクリート 高炉 21 - 8 - 4035, 400 W/C = 6.0%m 3 生コンクリート 高炉 24 - 5 - 40W/C = 5.5%m 3 35, 700

種 別 生コンクリート 中部地方整備局 単位:円 岐阜21 品 目 規 格 単 位 考 131岐 132岐 133岐 134岐 137岐 140岐 146岐 147岐 156岐 157岐 多治見 瑞浪市 恵那南 中津川 八幡外 白鳥南 金山町 下呂町 高山西 久々野 生コンクリート 18-15-25 (20) m 3 26,600 生コンクリート 18 - 18 - 25 (20)26,600 m 3 生コンクリート 21-15-25 (20) 26, 900 m 3 生コンクリート 21-18-25 (20) m 3 26,900 生コンクリート 24-8-25 (20) 27,300 W/C = 5.5 %m 3 生コンクリート 20, 300 24, 800 26, 650 26,600 25, 600 27, 300 27,300 W/C = 5.5 %24-12-25 (20) m 3 生コンクリート 30-8-25 (20) m 3 28,200 W/C = 5.5 %生コンクリート 30-12-25 (20) 21, 200 25, 700 27, 350 27, 300 26, 300 28, 200 28,200 W/C = 5.5 %m 3 生コンクリート 曲げ 4.5-2.5-40 $C = 280 \sim 350$ m 3 27,200 W/C = 6.0 %生コンクリート 18-15-40 C=270以上 m 3 生コンクリート 36-12-25 (20) m 3 W/C = 5.5%生コンクリート 高炉 18-8-25 (20) 26, 400 27,000 W/C = 6.0 %m 3 生コンクリート 高炉 21-8-25 (20) m 3 26, 700 27,300 W/C = 5.5 %生コンクリート 高炉 21-12-25 (20) m 3 W/C = 5.5%生コンクリート 高炉 24-8-25 (20) m 3 26, 700 27,300 W/C = 5.5 %生コンクリート 高炉 24-12-25(20)m 3 20, 300 24, 800 26,650 26,600 25,600 27, 300 27,300 W/C = 5.5 %生コンクリート 高炉 30-15-25(20) C=350 m 3 28, 100 28, 400 C = 3 5 0 生コンクリート 高炉 18-3-40 W/C = 6.0%m 3 生コンクリート 高炉 18 - 5 - 4026, 400 W/C = 6.0%m 3 生コンクリート 高炉 27,000 W/C = 6.0 %18-8-40 26, 400 m 3 生コンクリート 高炉 18 - 12 - 40m 3 W/C = 5.5%生コンクリート 高炉 21 - 3 - 40W/C = 6.0%m 3 生コンクリート 高炉 21 - 5 - 40W/C = 6.0%m 3 生コンクリート 高炉 21 - 8 - 40m 3 26, 400 27,000 W/C = 6.0 %生コンクリート 高炉 24 - 5 - 40W/C = 5.5%m 3

種 別	生コンクリート												中部地方整	備局 単位	: 円
		10 16		岐阜	2 1				静岡	2 2					-1
	品目	規格	単位		166岐 古川町	201静 下田市	205静 中伊豆	207静 沼津市	208静 伊豆国	209静 御殿未	210静 小山未	2 1 2 静 富士未	2 1 4 静 富士川	備	考
	生コンクリート	18-15-25 (20)	m 3				27, 100								
	生コンクリート	18-18-25 (20)	m 3				27, 100								
	生コンクリート	21-15-25 (20)	m 3				27, 600								
	生コンクリート	21-18-25 (20)	m 3				27, 600								
	生コンクリート	24-8-25 (20)	m 3				28, 100		26, 400					W/C=55%	
	生コンクリート	24-12-25 (20)	m 3	27, 300	27, 300		28, 100		26, 400					W/C=55%	
	生コンクリート	30-8-25 (20)	m 3				29, 200							W/C=55%	
	生コンクリート	30-12-25 (20)	m 3	28, 200	28, 200								24, 900	W/C = 5.5%	
	生コンクリート	曲げ 4.5-2.5-40	m 3											$C = 2 \ 8 \ 0 \sim 3$	5 0
	生コンクリート	18-15-40 C=270以上	m 3				27, 600							W/C=60%	
	生コンクリート	36-12-25 (20)	m 3											W/C=55%	
	生コンクリート 高炉	18-8-25 (20)	m 3				27, 800		26, 100					W/C=60%	
	生コンクリート 高炉	21-8-25 (20)	m 3				28, 300		26, 600					W/C=55%	
	生コンクリート 高炉	21-12-25 (20)	m 3										24, 300	W/C=55%	
	生コンクリート 高炉	2 4 - 8 - 2 5 (20)	m 3				28, 300		26, 600					W/C=55%	
	生コンクリート 高炉	2 4-1 2-2 5 (20)	m 3	27, 300	27, 300		28, 300		26, 600					W/C=55%	
	生コンクリート 高炉	3 0 - 1 5 - 2 5 (2 0) C = 3 5 0	m 3				29, 500							C = 3 5 0	
	生コンクリート 高炉	18-3-40	m 3											W/C=60%	
	生コンクリート 高炉	18-5-40	m 3				27, 800		26, 100					W/C=60%	
	生コンクリート 高炉	18-8-40	m 3				27, 800		26, 100					W/C=60%	
	生コンクリート 高炉	18-12-40	m 3									24, 300	24, 300	W/C = 5.5%	
	生コンクリート 高炉	21-3-40	m 3											W/C=60%	
	生コンクリート 高炉	21-5-40	m 3				27, 800		26, 100					W/C=60%	
	生コンクリート 高炉	21-8-40	m 3				27, 800		26, 100					W/C=60%	
	生コンクリート 高炉	2 4 - 5 - 4 0	m 3				28, 300		26, 600					W/C=55%	

種 別 生コンクリート 中部地方整備局 単位:円 静岡 2 2 品 目 規 格 単 位 考 215静 216静 217静 220静 221静 224静 225静 226静 228静 230静 芝川町 静岡市 静岡中 焼津市 島田市 吉田町 掛川市 袋井市 天竜市 水窪町 生コンクリート 18-15-25 (20) m 3 35,000 生コンクリート 18 - 18 - 25 (20)35,000 m 3 35, 600 生コンクリート 21-15-25 (20) m 3 生コンクリート 21-18-25 (20) m 3 35,600 生コンクリート 24-8-25 (20) 36, 200 W/C = 5.5%m 3 生コンクリート 22, 200 40,200 W/C = 5.5 %24-12-25 (20) m 3 生コンクリート 30-8-25 (20) m 3 W/C = 5.5%生コンクリート 41,400 W/C = 5.5 %30-12-25 (20) 24, 900 24, 400 23, 400 23, 400 m 3 生コンクリート 曲げ 4.5-2.5-40 $C = 280 \sim 350$ m 3 39,600 W/C = 6.0 %生コンクリート 18-15-40 C=270以上 m 3 生コンクリート 36-12-25 (20) W/C = 5.5%m 3 生コンクリート 高炉 18-8-25 (20) 35, 800 21,800 25, 800 39, 600 W/C = 6 0 % m 3 生コンクリート 高炉 21-8-25 (20) m 3 36, 400 22, 500 26, 500 40,200 W/C = 5.5 %生コンクリート 高炉 21-12-25 (20) m 3 24, 300 23, 400 22, 500 W/C = 5.5%生コンクリート 高炉 24-8-25 (20) m 3 26, 500 40,200 W/C = 5.5 %生コンクリート 高炉 24-12-25(20)m 3 22, 500 40,200 W/C = 5.5 %生コンクリート 高炉 30-15-25(20) C=350 37, 700 C = 350m 3 18-3-40 35, 800 W/C = 6.0%生コンクリート 高炉 m 3 生コンクリート 高炉 18 - 5 - 4035, 800 22, 100 26, 100 39, 600 W/C = 6 0 % m 3 生コンクリート 高炉 39,600 W/C = 6.0 %18-8-40 35, 800 26, 100 m 3 生コンクリート 高炉 18-12-40m 3 24, 300 23, 400 22, 800 W/C = 5.5%21 - 3 - 40生コンクリート 高炉 35, 800 W/C = 6.0%m 3 生コンクリート 高炉 21 - 5 - 4035, 800 39, 600 W/C = 6 0 % m 3 生コンクリート 高炉 21 - 8 - 40m 3 35, 800 39,600 W/C = 6.0 %生コンクリート 高炉 24 - 5 - 4036, 400 22, 800 40,200 W/C = 5.5 %m 3

種 別 生コンクリート 中部地方整備局 単位:円 静岡22 愛知23 品 目 規 格 単 位 考 231静 232静 233静 301愛 302愛 303愛 304愛 305愛 308愛 310愛 浜松市 引佐町 湖西市 名古屋 春日井 一宮市 津島市 大府市 岡崎市 安城市 生コンクリート 18-15-25 (20) m 3 生コンクリート 18 - 18 - 25 (20)m 3 生コンクリート 21-15-25 (20) m 3 生コンクリート 21-18-25 (20) m 3 生コンクリート 24-8-25 (20) W/C = 5.5%m 3 生コンクリート 18, 200 18, 200 18, 700 19, 700 19, 700 W/C = 5 5 % 24-12-25 (20) 18, 200 18, 200 m 3 生コンクリート 30-8-25 (20) m 3 W/C = 5.5%生コンクリート 30-12-25 (20) 18,600 18,600 18,600 18,600 19, 100 20, 100 20, 100 W/C = 5 5 % m 3 生コンクリート 曲げ 4.5-2.5-40 $C = 280 \sim 350$ m 3 生コンクリート 18-15-40 C=270以上 m 3 W/C = 6.0%生コンクリート 36-12-25 (20) 21,050 21,050 W/C = 5.5%m 3 生コンクリート 高炉 18-8-25 (20) 22,800 23,800 W/C = 6.0%m 3 生コンクリート 高炉 21-8-25 (20) m 3 23, 500 24, 500 W/C = 5.5%生コンクリート 高炉 21-12-25 (20) m 3 W/C = 5.5%生コンクリート 高炉 24-8-25 (20) m 3 23, 500 24,500 W/C = 5.5%生コンクリート 高炉 24-12-25(20)m 3 18, 200 18, 200 18, 200 18, 200 18,700 19,700 19,700 W/C = 5 5 % 生コンクリート 高炉 30-15-25(20) C=350 C = 350m 3 18-3-40 W/C = 6.0%生コンクリート 高炉 m 3 生コンクリート 高炉 18 - 5 - 40W/C = 6.0%m 3 生コンクリート 高炉 18-8-40 23, 100 24, 100 W/C = 6.0%m 3 生コンクリート 高炉 18-12-40m 3 18,600 18,600 18,600 18,600 W/C = 5.5%21 - 3 - 40生コンクリート 高炉 W/C = 6.0%m 3 生コンクリート 高炉 21 - 5 - 4023, 100 24, 100 W/C = 6.0%m 3 生コンクリート 高炉 21 - 8 - 40m 3 23, 100 24, 100 W/C = 6.0%生コンクリート 高炉 24 - 5 - 4023, 800 24,800 W/C = 5.5%m 3

種 別	生コンクリート												中部地方整	備局 単位	: 円
		10 16					愛知 2 3					三重24			-14
	品目	規 格 	単位	3 1 1 愛 豊田市	3 1 2 愛 足助町	3 1 3 愛 豊橋市	3 1 5 愛 新城市	316愛 設楽町	3 1 7 愛 豊根村	3 2 6 愛 知多市	401三 桑名市	402三 四目市	403三 鈴鹿市	備	考
	生コンクリート	18-15-25 (20)	m 3							17, 500					
	生コンクリート	18-18-25 (20)	m 3							17, 500					
	生コンクリート	21-15-25 (20)	m 3							17, 900					
	生コンクリート	21-18-25 (20)	m 3							17, 900					
	生コンクリート	24-8-25 (20)	m 3							18, 700				W/C=55%	
	生コンクリート	24-12-25 (20)	m 3	20, 700	25, 200	25, 200				18, 700				W/C=55%	
	生コンクリート	30-8-25 (20)	m 3							19, 100				W/C=55%	
	生コンクリート	30-12-25 (20)	m 3	21, 100	25, 600	25, 600				19, 100				W/C=55%	
	生コンクリート	曲げ 4.5-2.5-40	m 3											$C = 2 \ 8 \ 0 \sim 3$	5 0
	生コンクリート	18-15-40 C=270以上	m 3							18, 700				W/C=60%	
	生コンクリート	36-12-25 (20)	m 3			27, 600				21, 550				W/C=55%	
	生コンクリート 高炉	18-8-25 (20)	m 3						33, 300	18, 300				W/C=60%	
	生コンクリート 高炉	21-8-25 (20)	m 3						33, 700	18, 700				W/C=55%	
	生コンクリート 高炉	21-12-25 (20)	m 3											W/C=55%	
	生コンクリート 高炉	24-8-25 (20)	m 3						33, 700	18, 700				W/C=55%	
	生コンクリート 高炉	2 4-1 2-2 5 (20)	m 3	20, 700	25, 200	25, 200				18, 700	23, 000	26, 000	29, 00	W/C = 5.5%	
	生コンクリート 高炉	3 0 - 1 5 - 2 5 (2 0) C = 3 5 0	m 3						34, 100	19, 100				C = 3 5 0	
	生コンクリート 高炉	18-3-40	m 3											W/C=60%	
	生コンクリート 高炉	18-5-40	m 3						33, 300	18, 700				W/C=60%	
	生コンクリート 高炉	18-8-40	m 3						33, 300	18, 700				W/C=60%	
	生コンクリート 高炉	18-12-40	m 3							19, 100				W/C=55%	
	生コンクリート 高炉	21-3-40	m 3											W/C=60%	
	生コンクリート 高炉	2 1 - 5 - 4 0	m 3							18, 700				W/C=60%	
	生コンクリート 高炉	21-8-40	m 3							18, 700				W/C=60%	
	生コンクリート 高炉	2 4 - 5 - 4 0	m 3							19, 100				W/C = 55%	

種 別 生コンクリート 中部地方整備局 単位:円 三重24 品 目 規 格 単 位 考 404三 405三 407三 408三 409三 412三 413三 421三 422三 423三 紀伊長 久居市 松阪市 大台町 飯高町 伊勢市 大宮町 尾鷲北 尾鷲南 生コンクリート 18-15-25 (20) m 3 生コンクリート 18 - 18 - 25 (20)m 3 生コンクリート 21-15-25 (20) m 3 生コンクリート 21-18-25 (20) m 3 生コンクリート 24-8-25 (20) 31,500 34, 900 34,900 W/C = 5.5 %m 3 生コンクリート 27,000 W/C = 5.5%24-12-25 (20) m 3 生コンクリート 30-8-25 (20) m 3 32, 500 36,900 36,900 W/C = 5.5 %生コンクリート 30-12-25 (20) W/C = 5.5%m 3 生コンクリート 曲げ 4.5-2.5-40 34,000 $C = 280 \sim 350$ m 3 生コンクリート 18-15-40 C=270以上 m 3 W/C = 6.0%生コンクリート 36-12-25 (20) m 3 W/C = 5.5%生コンクリート 高炉 18-8-25 (20) 31,000 32, 900 32, 900 W/C = 6 0 % m 3 生コンクリート 高炉 21-8-25 (20) m 3 31,500 33, 900 33,900 W/C = 5.5 %生コンクリート 高炉 21-12-25 (20) m 3 W/C = 5.5%生コンクリート 高炉 24-8-25 (20) m 3 31,500 34, 900 34,900 W/C = 5.5 %生コンクリート 高炉 24-12-25(20)m 3 27,000 27,000 27,000 26,000 W/C = 5.5%生コンクリート 高炉 30-15-25(20) C=350 32, 500 36, 900 36,900 C = 3 5 0 m 3 生コンクリート 高炉 18-3-40 W/C = 6.0%m 3 生コンクリート 高炉 18 - 5 - 4031,000 32,900 32, 900 W/C = 6 0 % m 3 生コンクリート 高炉 32,000 32,900 W/C = 6.0 %18-8-40 31,000 32,900 m 3 生コンクリート 高炉 18-12-40m 3 W/C = 5.5%生コンクリート 高炉 21 - 3 - 40W/C = 6.0%m 3 生コンクリート 高炉 21 - 5 - 40W/C = 6.0%m 3 生コンクリート 高炉 21 - 8 - 40m 3 32,000 31,000 33, 900 33,900 W/C = 6.0 %生コンクリート 高炉 24 - 5 - 40W/C = 5.5%m 3

種 別	生コンクリート								中部地方整	備局 単位	: 円
	Р В	規格	出位		三重	2 4		 		一	** -
	品目	規格	単位	424三 熊野南	425三 熊野外	426三 御浜南	427三 上野市			備	考
	生コンクリート	18-15-25 (20)	m 3								
	生コンクリート	18-18-25 (20)	m 3								
	生コンクリート	21-15-25 (20)	m 3								
	生コンクリート	21-18-25 (20)	m 3								
	生コンクリート	24-8-25 (20)	m 3			34, 900				W/C=55%	
	生コンクリート	24-12-25 (20)	m 3							W/C=55%	
	生コンクリート	30-8-25 (20)	m 3			36, 900				W/C=55%	
	生コンクリート	30-12-25 (20)	m 3							W/C=55%	
	生コンクリート	曲げ 4.5-2.5-40	m 3							$C = 2 \ 8 \ 0 \sim 3$	5 0
	生コンクリート	18-15-40 C=270以上	m 3							W/C=60%	
	生コンクリート	36-12-25 (20)	m 3							W/C=55%	
	生コンクリート 高炉	18-8-25 (20)	m 3			32, 900				W/C=60%	
	生コンクリート 高炉	21-8-25 (20)	m 3			33, 900				W/C=55%	
	生コンクリート 高炉	21-12-25 (20)	m 3							W/C=55%	
	生コンクリート 高炉	24-8-25 (20)	m 3			34, 900				W/C=55%	
	生コンクリート 高炉	24-12-25 (20)	m 3							W/C=55%	
	生コンクリート 高炉	30-15-25 (20) C=350	m 3			36, 900				C = 3 5 0	
	生コンクリート 高炉	18-3-40	m 3							W/C=60%	
	生コンクリート 高炉	18-5-40	m 3			32, 900				W/C=60%	
	生コンクリート 高炉	18-8-40	m 3			32, 900				W/C=60%	
	生コンクリート 高炉	18-12-40	m 3							W/C=55%	
	生コンクリート 高炉	21-3-40	m 3							W/C=60%	
	生コンクリート 高炉	21-5-40	m 3							W/C=60%	
	生コンクリート 高炉	21-8-40	m 3			33, 900				W/C=60%	
	生コンクリート 高炉	2 4 - 5 - 4 0	m 3							W/C=55%	

種 別 生コンクリート 中部地方整備局 単位:円 岐阜21 長野20 品 目 規 格 単 位 考 505長 506長 507長 503長 504長 509長 102岐 103岐 | 104岐 | 105岐 飯田市 大鹿村 阿智村 塩尻市 藤橋南 坂内村 根尾北 根尾中 伊那市 南木曽 24-8-40 35,700 W/C = 5.5 %生コンクリート 高炉 26, 050 25,600 25, 400 38, 700 m 3 生コンクリート 高炉 C = 300 - 5 - 40m 3 生コンクリート 高炉 $C = 600 \, \text{kg/m3} \, \text{Gmax} = 40$ 33,600 m 3 生コンクリート 高炉 18-15-40 C=270以上 m 3 26,650 W/C = 6.0%生コンクリート 高炉 18-12-25 (20) W/C = 5.5%m 3 生コンクリート 高炉 24 - 12 - 40W/C = 5.5%m 3 W/C = 5.5%生コンクリート 高炉 30-12-25 (20) m 3 生コンクリート 早強 36-8-25 (20) m 3 生コンクリート 早強 40-8-25 (20) W/C = 5.5%m 3 W/C = 5.5%生コンクリート 早強 30-12-25 (20) m 3 生コンクリート 早強 40-12-25 (20) m 3 34, 050 33, 850 32, 400 W/C = 5.5%モルタル 1:1 m 3 モルタル 1:2 m 3 32, 100 モルタル 1:3 m 3 29, 550 27, 900 41, 200 38, 200 モルタル 1:1 高炉 m 3 36, 400 モルタル 1:2 高炉 m 3 32, 100 31,900 31,900 29, 200 27, 900 モルタル 1:3 高炉 m 3 29, 550 29, 350 29, 500 27, 900 41, 200 38, 200

種 別 生コンクリート 中部地方整備局 単位:円 岐阜21 品 目 規 格 単 位 考 106岐 107岐 109岐 110岐 | 119岐 | 120岐 | 123岐 | 124岐 | 125岐 | 126岐 根尾南 揖斐川 大垣市 岐阜市 美濃中 美濃加 御嵩町 八百津 白川中 24-8-40 W/C = 5.5%生コンクリート 高炉 35, 700 m 3 C = 300 - 5 - 40生コンクリート 高炉 m 3 生コンクリート 高炉 $C = 600 \, \text{kg/m3} \, \text{Gmax} = 40$ m 3 生コンクリート 高炉 18-15-40 C=270以上 m 3 W/C = 6.0%生コンクリート 高炉 18-12-25 (20) W/C = 5.5%m 3 生コンクリート 高炉 24-12-40W/C = 5.5%m 3 生コンクリート 高炉 W/C = 5.5%30-12-25 (20) m 3 24, 700 21,700 21,700 生コンクリート 早強 36-8-25 (20) m 3 生コンクリート 早強 40-8-25 (20) W/C = 5.5%m 3 生コンクリート 早強 W/C = 5.5%30-12-25 (20) m 3 生コンクリート 早強 40-12-25 (20) m 3 25,600 29,600 W/C = 5.5%モルタル 1:1 m 3 モルタル 1:2 m 3 モルタル 1:3 m 3 38, 200 モルタル 1:1 高炉 m 3 モルタル 1:2 高炉 m 3 モルタル 1:3 高炉 38, 200 m 3

種 別 生コンクリート 中部地方整備局 単位:円 岐阜21 品 目 規 格 単 位 考 131岐 132岐 133岐 134岐 137岐 140岐 146岐 147岐 156岐 157岐 多治見 恵那南 八幡外 白鳥南 下呂町 高山西 瑞浪市 中津川 金山町 久々野 24-8-40 27,300 W/C = 5.5 %生コンクリート 高炉 26, 700 m 3 生コンクリート 高炉 C = 300 - 5 - 40m 3 生コンクリート 高炉 $C = 600 \, \text{kg/m3} \, \text{Gmax} = 40$ m 3 27,200 W/C = 6.0 %生コンクリート 高炉 18-15-40 C=270以上 m 3 26, 900 生コンクリート 高炉 18-12-25 (20) W/C = 5.5%m 3 生コンクリート 高炉 24 - 12 - 40W/C = 5.5%m 3 28,200 W/C = 5.5 %生コンクリート 高炉 30-12-25 (20) m 3 27, 300 26, 300 28, 200 生コンクリート 早強 36-8-25 (20) 30, 200 29, 900 m 3 生コンクリート 早強 40-8-25 (20) 30, 500 30,700 W/C = 5.5 %m 3 28, 200 27, 200 29,000 29,000 W/C = 5 5 % 生コンクリート 早強 30-12-25 (20) m 3 29, 600 生コンクリート 早強 40-12-25 (20) m 3 25, 600 30, 100 29, 300 28, 300 30, 700 30,700 W/C = 5.5 %モルタル 1:1 m 3 モルタル 1:2 m 3 34, 900 モルタル 1:3 m 3 31, 200 モルタル 1:1 高炉 m 3 35, 100 モルタル 1:2 高炉 m 3 30, 500 34,900 モルタル 1:3 高炉 m 3 29, 200 31, 200

種 別 生コンクリート 中部地方整備局 単位:円 岐阜21 静岡 2 2 品 目 規 格 単 位 考 162岐 166岐 201静 205静 207静 208静 209静 210静 212静 214静 神岡西 中伊豆 伊豆国 御殿未 小山未 富士未 古川町 下田市 沼津市 富士川 24-8-40 W/C = 5.5%生コンクリート 高炉 28, 300 26,600 m 3 生コンクリート 高炉 C = 300 - 5 - 40m 3 29, 500 生コンクリート 高炉 $C = 600 \, \text{kg/m3} \, \text{Gmax} = 40$ m 3 生コンクリート 高炉 18-15-40 C=270以上 m 3 27, 800 W/C = 6.0%生コンクリート 高炉 18-12-25 (20) 24, 300 24, 300 W/C = 5 5 % m 3 生コンクリート 高炉 24 - 12 - 4025, 900 24, 300 W/C = 5.5%m 3 W/C = 5.5%生コンクリート 高炉 30-12-25 (20) m 3 28, 200 28, 200 生コンクリート 早強 36-8-25 (20) 33, 600 m 3 生コンクリート 早強 40-8-25 (20) 34, 300 W/C = 5.5%m 3 29,000 29,000 W/C = 5.5%生コンクリート 早強 30-12-25 (20) m 3 生コンクリート 早強 40-12-25 (20) m 3 30, 700 30, 700 30, 400 30,400 W/C = 5.5 %モルタル 1:1 m 3 38, 100 36, 400 モルタル 1:2 m 3 34, 100 32, 400 モルタル 1:3 m 3 32, 600 30, 900 モルタル 1:1 高炉 m 3 38, 100 36, 400 モルタル 1:2 高炉 m 3 34, 100 32, 400 モルタル 1:3 高炉 m 3 32,600 30, 900

種 別	生コンクリート											I	中部地方整例	帯局 単位	: 円
		10 14	W 41-					静岡	2 2					f+4+	±
	品目	規格	単位	2 1 5 静 芝川町	2 1 6 静 静岡市	2 1 7 静 静岡中	220静 焼津市	2 2 1 静 島田市	224静 吉田町	225静 掛川市	226静 袋井市	228静 天竜市	230静 水窪町	備	考
	生コンクリート 高炉	2 4 - 8 - 4 0	m 3										40, 200	W/C=55%	
	生コンクリート 高炉	C = 3 0 0 - 5 - 4 0	m 3												
	生コンクリート 高炉	$C = 6 \ 0 \ 0 \ k \ g / m \ 3$ $G m \ a \ x = 4 \ 0$	m 3												
	生コンクリート 高炉	18-15-40 C=270以上	m 3											W/C=60%	
	生コンクリート 高炉	18-12-25 (20)	m 3	24, 300	23, 400		22, 500							W/C=55%	
	生コンクリート 高炉	2 4 - 1 2 - 4 0	m 3											W/C=55%	
	生コンクリート 高炉	30-12-25 (20)	m 3											W/C = 55%	
	生コンクリート 早強	36-8-25 (20)	m 3												
	生コンクリート 早強	40-8-25 (20)	m 3						29, 600					W/C = 5.5%	
	生コンクリート 早強	30-12-25 (20)	m 3											W/C = 5.5%	
	生コンクリート 早強	40-12-25 (20)	m 3	30, 400	29, 600		29, 600		29, 600				48, 600	W/C = 5.5%	
	モルタル	1:1	m 3			61, 900			35, 000			39, 000	53, 000		
	モルタル	1:2	m 3			52, 700			30, 000			34, 000	48, 000		
	モルタル	1:3	m 3			45, 900			28, 000			32, 000	46, 000		
	モルタル	1:1 高炉	m 3			61, 900			35, 000			39, 000	53, 000		
	モルタル	1:2 高炉	m 3			52, 700			30, 000			34, 000	48, 000		
	モルタル	1:3 高炉	m 3						28, 000			32, 000	46, 000		

種 別	生コンクリート												中部地方整	備局 単位:	: 円
					静岡 2 2					愛知23					to.
	品目	規格	単位	231静 浜松市		233静 湖西市	301愛 名古屋	302愛 春日井	303愛 一宮市		305愛 大府市	308愛 岡崎市	3 1 0 愛 安城市	備	考
	生コンクリート 高炉	24-8-40	m 3		23, 800	24, 800								W/C=55%	
	生コンクリート 高炉	$C = 3 \ 0 \ 0 - 5 - 4 \ 0$	m 3												
	生コンクリート 高炉	$C = 6 \ 0 \ 0 \ k \ g / m \ 3 Gm \ a \ x = 4 \ 0$	m 3												
	生コンクリート 高炉	18-15-40 C=270以上	m 3											W/C=60%	
	生コンクリート 高炉	18-12-25 (20)	m 3				18, 200	18, 200	18, 200	18, 200				W/C=55%	
	生コンクリート 高炉	2 4 - 1 2 - 4 0	m 3											W/C=55%	
	生コンクリート 高炉	30-12-25 (20)	m 3				18, 600	18, 600	18, 600	18, 600				W/C=55%	
	生コンクリート 早強	36-8-25 (20)	m 3												
	生コンクリート 早強	40-8-25 (20)	m 3											W/C=55%	
	生コンクリート 早強	30-12-25 (20)	m 3											W/C=55%	
	生コンクリート 早強	40-12-25 (20)	m 3				23, 600	23, 600	23, 600	23, 600	24, 100	24, 800	24, 800	W/C=55%	
	モルタル	1:1	m 3		36, 000	37, 000									
	モルタル	1:2	m 3		31, 000	32, 000									
	モルタル	1:3	m 3		29, 000	30, 000									
	モルタル	1:1 高炉	m 3		36, 000	37, 000								-	
	モルタル	1:2 高炉	m 3		31, 000										
	モルタル	1:3 高炉	m 3		29, 000	30, 000									

種 別 生コンクリート 中部地方整備局 単位:円 愛知23 三重24 品 目 規 格 単 位 考 316愛 3 1 7 愛 豊根村 311愛 312愛 313愛 315愛 326愛 401三 402三 403三 豊田市 豊橋市 新城市 四日市 足助町 設楽町 知多市 桑名市 鈴鹿市 24-8-40 W/C = 5.5%生コンクリート 高炉 m 3 19, 100 生コンクリート 高炉 C = 300 - 5 - 40m 3 19,500 生コンクリート 高炉 $C = 600 \, \text{kg/m3} \, \text{Gmax} = 40$ m 3 生コンクリート 高炉 18-15-40 C=270以上 m 3 18,700 W/C = 6.0%18, 700 生コンクリート 高炉 18-12-25 (20) W/C = 5.5%m 3 生コンクリート 高炉 24 - 12 - 40W/C = 5.5%m 3 生コンクリート 高炉 30-12-25 (20) m 3 19, 100 W/C = 5.5%生コンクリート 早強 36-8-25 (20) 23, 200 m 3 生コンクリート 早強 40-8-25 (20) 24, 100 W/C = 5.5%m 3 W/C = 5.5%生コンクリート 早強 30-12-25 (20) m 3 生コンクリート 早強 40-12-25 (20) m 3 25, 800 30, 300 30, 200 24, 100 W/C = 5.5%モルタル 1:1 m 3 45, 200 29, 200 モルタル 1:2 m 3 39, 200 25, 300 モルタル 1:3 m 3 36, 200 21,700 モルタル 1:1 高炉 m 3 45, 200 29, 200 モルタル 1:2 高炉 m 3 39, 200 25, 300 モルタル 1:3 高炉 m 3 21,700

種 別 生コンクリート 中部地方整備局 単位:円 三重 2 4 品 目 規 格 単 位 考 409 = 412 = 413 = 404三 405三 407三 408三 421三 422三 423三 久居市 松阪市 大台町 伊勢市 紀伊長 尾鷲北 津市 飯高町 大宮町 尾鷲南 24-8-40 32, 500 31,500 34,900 W/C = 5.5 %生コンクリート 高炉 34, 900 m 3 生コンクリート 高炉 C = 300 - 5 - 40m 3 生コンクリート 高炉 $C = 600 \, \text{kg/m3} \, \text{Gmax} = 40$ m 3 32,900 W/C = 6.0 %生コンクリート 高炉 18-15-40 C=270以上 m 3 31,000 32,900 生コンクリート 高炉 18-12-25 (20) W/C = 5.5%m 3 生コンクリート 高炉 24-12-40W/C = 5.5%m 3 生コンクリート 高炉 W/C = 5.5%30-12-25 (20) m 3 生コンクリート 早強 36-8-25 (20) 34, 500 43, 900 43, 900 m 3 生コンクリート 早強 40-8-25 (20) 37,000 44, 900 44,900 W/C = 5.5 %m 3 生コンクリート 早強 W/C = 5.5%30-12-25 (20) m 3 生コンクリート 早強 40-12-25 (20) m 3 W/C = 5.5%モルタル 1:1 m 3 モルタル 1:2 m 3 モルタル 1:3 m 3 39, 500 モルタル 1:1 高炉 m 3 44, 500 41,600 41,600 モルタル 1:2 高炉 m 3 38, 500 38, 400 38, 400 モルタル 1:3 高炉 m 3 39, 500 36, 500 35,000 35,000

種 別	生コンクリート									中部地方整体	# 局 単位:	円
					三重	2 4						
	品目	規格	単位	424三 熊野南		426三 御浜南	427三 上野市				備	考
	生コンクリート 高炉	2 4 - 8 - 4 0	m 3	7///-2113	W-1>1	34, 900					W/C=55%	
	生コンクリート 高炉	C = 3 0 0 - 5 - 4 0	m 3									
	生コンクリート 高炉	$C = 6 \ 0 \ 0 \ k \ g / m \ 3 $ $G \ m \ a \ x = 4 \ 0$	m 3									
	生コンクリート 高炉	18-15-40 C=270以上	m 3			32, 900					W/C=60%	
	生コンクリート 高炉	18-12-25 (20)	m 3								W/C=55%	
	生コンクリート 高炉	2 4-1 2-4 0	m 3								W/C=55%	
	生コンクリート 高炉	30-12-25 (20)	m 3								W/C=55%	
	生コンクリート 早強	36-8-25 (20)	m 3			43, 900						
	生コンクリート 早強	40-8-25 (20)	m 3			44, 900					W/C=55%	
	生コンクリート 早強	30-12-25 (20)	m 3								W/C=55%	
	生コンクリート 早強	40-12-25 (20)	m 3								W/C=55%	
	モルタル	1:1	m 3									
	モルタル	1:2	m 3									
	モルタル	1:3	m 3									
	モルタル	1:1 高炉	m 3			41, 600						
	モルタル	1:2 高炉	m 3			38, 400						
	モルタル	1:3 高炉	m 3			35, 000						

材 料 単 価 【設計】

2025年11月___

種 別	骨材・砕石・割栗石等											1	中部地方整備	局 単位	: 円
						長野:	2 0				岐阜	2 1			
	品目	規格	単位	503長 伊那市	504長 飯田市		506長 阿智村	507長 南木曽	509長 塩尻市	102岐 藤橋南	103岐 坂内村		105岐 根尾中	備	考
	単粒度砕石	3号40-30mm	m 3												
	切込砕石	4 0 mm~ 0 mm	m 3												
	栗石	中150~200mm	m 3												
	コンクリート用骨材 砂利	2 5 mm (洗い)	m 3			6, 800	6, 900		6, 900		5, 650	5, 850	5, 850		
	コンクリート用骨材 砂	洗い 荒目	m 3			6, 650	6, 750		7, 400	5, 850	5, 950	6, 150	6, 150		
	コンクリート用骨材 砂	洗い細目	m 3			6, 650	6, 750		7, 400	6, 150					
	コンクリート用骨材 砕石	4 0 ~ 5 m m	m 3												
	クラッシャーラン	C – 2 0	m 3												
	クラッシャーラン	C – 3 0	m 3												
	クラッシャーラン	C-40	m 3			5, 600	5, 600		6, 100	4, 300					
	再生クラッシャーラン	R C – 3 0	m 3							2, 400					
	再生クラッシャーラン	R C – 4 0	m 3			4, 300	4, 200		4, 700	2, 300	2, 750	3, 300	3, 300		
	粒度調整砕石	M-25	m 3			5, 900	5, 900		6, 400						
	粒度調整砕石	M-30	m 3								5, 100	5, 300	5, 300		
	粒度調整砕石	M-40	m 3			5, 800	5, 800		6, 300	4, 900	5, 000	5, 200	5, 200		
	単粒度砕石	4号30-20mm	m 3			5, 850	5, 850		6, 600	5, 200					
	単粒度砕石	5号20-13mm	m 3			5, 950	5, 950		6, 600						
	単粒度砕石	6号13-5mm	m 3			6, 050	6, 050		6, 700						
	単粒度砕石	7号5-2.5mm	m 3			6, 150	6, 150		6, 800						
	割栗石	50-150mm	m 3						6, 400	5, 400	5, 500	5, 700	5, 700		
	割栗石	150-200mm	m 3							6, 350	6, 450	6, 650	6, 650		
	砂	クッション用	m 3							3, 700	3, 800	4, 200	4, 200		

材 料 単 価 【設計】

種 別	骨材・砕石・割栗石等											ī	中部地方整備	i局 単位	: 円
								岐阜	2 1						
	品目	規格	単位	106岐 根尾南	107岐 揖斐川	109岐 大垣市	110岐 岐阜市		120岐 美濃中	123岐 美濃加	1 2 4 岐 御嵩町	125岐 八百津	126岐 自川中	備	考
	単粒度砕石	3号40-30mm	m 3												
	切込砕石	4 0 mm~ 0 mm	m 3												
	栗石	中150~200mm	m 3												
	コンクリート用骨材 砂利	2 5 mm (洗い)	m 3	5, 550							5, 050	5, 150	5, 050		
	コンクリート用骨材 砂	洗い、荒目	m 3	5, 850							5, 350	5, 450	5, 350		
	コンクリート用骨材 砂	洗い細目	m 3								5, 650	5, 750	5, 650		
	コンクリート用骨材 砕石	4 0 ~ 5 mm	m 3												
	クラッシャーラン	C-20	m 3												
	クラッシャーラン	C – 3 0	m 3								4, 900	5, 500			
	クラッシャーラン	C-40	m 3								4, 800	5, 400	4, 800		
	再生クラッシャーラン	R C - 3 0	m 3								2, 800	3, 400	2, 800		
	再生クラッシャーラン	R C – 4 0	m 3	2, 150							2, 700	3, 300	2,700		
	粒度調整砕石	M-25	m 3												
	粒度調整砕石	M-30	m 3	5, 000							5, 200	5, 800	5, 200		
	粒度調整砕石	M-40	m 3	4, 900							5, 100	5, 700	5, 100		
	単粒度砕石	4号30-20mm	m 3								5, 400	6,000	5, 400		
	単粒度砕石	5号20-13mm	m 3								5, 700	6, 300	5, 700		
	単粒度砕石	6号13-5mm	m 3								5, 800	6, 400	5, 800		
	単粒度砕石	7号5-2.5mm	m 3								5, 900	6, 500	5, 900		
	割栗石	50-150mm	m 3	5, 400							5, 800	6, 400	5, 800		
	割栗石	150-200mm	m 3	6, 350							6, 300	6, 900	6, 300		
	砂	クッション用	m 3	3, 900							4, 700	5, 300	4, 700		

材 料 単 価 【設計】

147岐 156岐 157 下呂町 高山西 久々!	
147岐 156岐 157 下呂町 高山西 25年	哎
8	000
8	000
9	600
5	900
5	800
5	600
5	500
6	900
6	800
8	200
7	200
7	300
7	400
7	800
8	400
6	300
	5, 5, 5, 6, 8, 7, 7, 7, 8,

種 別	骨材・砕石・割栗石等												中部地方整備	局 単位	: 円
				岐阜	2 1				静岡	2 2					
	品 目	規格	単位	162岐 神岡西		201静 下田市	205静 中伊豆	207静 沼津市		209静 御殿未	210静 小山未	静 212静 214静 富士未 富士川	2 1 4 静 富士川	備	考
	単粒度砕石	3号40-30mm	m 3												
	切込砕石	4 0 mm~ 0 mm	m 3									4, 500	4, 400		
	栗石	中150~200mm	m 3									6, 500	6, 500		
	コンクリート用骨材 砂利	2 5 mm (洗い)	m 3	8,000	8,000		8, 150		7, 350		5, 650		6, 750		
	コンクリート用骨材 砂	洗い 荒目	m 3	8,000	8,000	10, 350	8, 450		7,650		5, 950		7, 050		
	コンクリート用骨材 砂	洗い細目	m 3		9, 600										
	コンクリート用骨材 砕石	4 0 ~ 5 m m	m 3												
	クラッシャーラン	C-20	m 3												
	クラッシャーラン	C - 3 0	m 3	5, 600	5, 300	6, 200	5, 000		5, 300		5, 100		5, 400		
	クラッシャーラン	C-40	m 3	5, 500	5, 200						5, 300		5, 400		
	再生クラッシャーラン	RC-30	m 3												
	再生クラッシャーラン	RC-40	m 3	4, 800	4, 500	2, 900	2, 800		2, 500		2, 500		2,000		
	粒度調整砕石	M-25	m 3												
	粒度調整砕石	M-30	m 3	6, 600	6, 300	6, 500	5, 300		5, 600		5, 800		5, 600		
	粒度調整砕石	M-40	m 3	6, 500	6, 200										
	単粒度砕石	4号30-20mm	m 3				7, 600		7, 100		6,000		6, 100		
	単粒度砕石	5号20-13mm	m 3			7, 800	7, 700		7, 200		6, 100				
	単粒度砕石	6号13-5mm	m 3			7, 800	7,800		7, 300		6, 200				
	単粒度砕石	7号5-2.5mm	m 3			7, 800	7, 900		7, 400		6, 300				
	割栗石	5 0 - 1 5 0 mm	m 3	7, 500	7, 000	6, 100	4, 800		5, 500		5, 400		5, 700		
	割栗石	1 5 0 - 2 0 0 mm	m 3	8, 100	7, 500	6, 400	5, 100				5, 800				
	砂	クッション用	m 3												

材 料 単 価 【設計】

種 別	骨材・砕石・割栗石等											ı	中部地方整備	局 単位	: 円
								静岡	2 2						
	品目	規格	単位	2 1 5 静 芝川町	216静 静岡市	2 1 7 静 静岡中	220静 焼津市	221静 島田市	2 2 4 静 吉田町	225静 掛川市	2 2 6 静 袋井市	228静 天竜市	230静 水窪町	備	考
	単粒度砕石	3号40-30mm	m 3												
	切込砕石	40 mm~0 mm	m 3		2, 900	4, 700	3, 300	3, 600	4, 200	4, 400	4, 100	3, 700	5, 700		
	栗石	中150~200mm	m 3				6, 350	6, 150	6, 750	6, 850					
	コンクリート用骨材 砂利	2 5 mm (洗い)	m 3					6, 650	6, 750	6, 700	6, 900		6, 550		
	コンクリート用骨材 砂	洗い 荒目	m 3					6, 950	7, 000	7, 200	7, 400		6, 850		
	コンクリート用骨材 砂	洗い 細目	m 3												
	コンクリート用骨材 砕石	4 0 ~ 5 mm	m 3												
	クラッシャーラン	C-20	m 3												
	クラッシャーラン	C – 3 0	m 3			5, 300		4, 700	5, 300	4, 400	4, 200	3, 900	5, 900		
	クラッシャーラン	C-40	m 3												
	再生クラッシャーラン	R C - 3 0	m 3												
	再生クラッシャーラン	R C – 4 0	m 3					2, 100		2, 100	2, 100	2, 200	4, 300		
	粒度調整砕石	M-25	m 3												
	粒度調整砕石	M-30	m 3			6, 400		5, 500		4, 700	4, 500	4, 300	6, 300		
	粒度調整砕石	M-40	m 3												
	単粒度砕石	4号30-20mm	m 3			6, 800		6, 500		5, 900	5, 700		7, 800		
	単粒度砕石	5号20-13mm	m 3			6, 800		6, 500		5, 900	5, 700		7, 800		
	単粒度砕石	6号13-5mm	m 3			6, 800		6, 500		5, 900	5, 700		7, 800		
	単粒度砕石	7号5-2.5mm	m 3					6, 500		5, 900	5, 700		7, 800		
	割栗石	50-150mm	m 3			6, 850		5, 300			5, 700		7, 500		
	割栗石	1 5 0 - 2 0 0 mm	m 3								6, 100		7, 800		
	砂	クッション用	m 3												

材 料 単 価 【設計】

種 別	骨材・砕石・割栗石等											ı	中部地方整備	局 単位	: 円
					静岡22					愛知23					
	品目	規格	単位	231静 浜松市		233静 湖西市	3 0 1 愛 名古屋	302愛 春日井	303愛 一宮市	304愛 津島市	305愛 大府市	308愛 岡崎市	3 1 0 愛 安城市	備	考
	単粒度砕石	3号40-30mm	m 3				5, 300	5, 000	5, 200	5, 300	5, 700	5, 400	5, 550		
	切込砕石	40 mm~0 mm	m 3	3, 500	3, 300	3, 300									
	栗石	中150~200mm	m 3												
	コンクリート用骨材 砂利	2 5 mm (洗い)	m 3		7, 050	7, 050		6, 150		6, 150			6, 350		
	コンクリート用骨材 砂	洗い、荒目	m 3		7, 650	7, 650		6, 450	6, 450	6, 450			6,650		
	コンクリート用骨材 砂	洗い細目	m 3												
	コンクリート用骨材 砕石	4 0 ~ 5 mm	m 3										6, 100		
	クラッシャーラン	C-20	m 3												
	クラッシャーラン	C – 3 0	m 3		3, 500	3, 500		3, 900					4, 550		
	クラッシャーラン	C-40	m 3					3, 800	4, 000	4, 100	4, 600		4, 450		
	再生クラッシャーラン	RC-30	m 3												
	再生クラッシャーラン	R C - 4 0	m 3		2, 100	2, 200		1,800	1, 900	1, 900	2, 000		2, 100		
	粒度調整砕石	M-25	m 3					4, 200		4, 500					
	粒度調整砕石	M-30	m 3		3, 900	3, 900		4, 200		4, 500					
	粒度調整砕石	M-40	m 3					4, 100	4, 300	4, 400	5, 000		4, 850		
	単粒度砕石	4号30-20mm	m 3		5, 400	5, 400		5, 000	5, 200	5, 300	5, 700		5, 550		
	単粒度砕石	5号20-13mm	m 3		5, 400	5, 400		5, 100	5, 300	5, 400	5, 800		5, 650		
	単粒度砕石	6号13-5mm	m 3		5, 400	5, 400		5, 200	5, 400	5, 500	5, 900		5, 750		
	単粒度砕石	7号5-2.5mm	m 3		5, 400	5, 400				5, 500			5, 850		
	割栗石	5 0 - 1 5 0 mm	m 3		5, 100	5, 100		5, 500	5, 600	5, 900			7,000		
	割栗石	1 5 0 - 2 0 0 mm	m 3		5, 400	5, 400		5, 700	5, 800	6, 100					
	砂	クッション用	m 3												

料 単 価 【設計】

種 別	骨材・砕石・割栗石等			Ι									中部地方整備	請局 単位	: 円
	品目		単位一	愛知 2 3								三重24			
		規格		3 1 1 愛 豊田市	3 1 2 愛 足助町	3 1 3 愛 豊橋市	3 1 5 愛 新城市	316愛 設楽町	3 1 7 愛 豊根村	326愛 知多市	4 0 1 三 桑名市		403三 鈴鹿市	備	考
	単粒度砕石	3号40-30mm	m 3	5, 800	7, 600	5, 600	6, 000			5, 900					
	切込砕石	40 mm~0 mm	m 3								5, 200	5, 200	5, 000		
	栗石	中150~200mm	m 3												
	コンクリート用骨材 砂利	2 5 mm (洗い)	m 3		6, 150					6, 600	5, 650				
	コンクリート用骨材 砂	洗い 荒目	m 3		6, 500			5, 950		6, 900	5, 900				
	コンクリート用骨材 砂	洗い細目	m 3												
	コンクリート用骨材 砕石	4 0 ~ 5 m m	m 3		7,000			6, 650		6, 400					
	クラッシャーラン	C - 2 0	m 3		6, 700			4, 950	5, 350	4, 900					
	クラッシャーラン	C – 3 0	m 3		6, 700			4, 950	5, 350	4, 900	5, 400				
	クラッシャーラン	C-40	m 3		6, 600			4, 950	5, 350	4, 800	5, 200				
	再生クラッシャーラン	R C – 3 0	m 3												
	再生クラッシャーラン	R C – 4 0	m 3		4,600			4, 500	4, 900	2, 000	2, 000				
	粒度調整砕石	M-25	m 3		7,000			5, 250	5, 650	5, 200	5, 500				
	粒度調整砕石	M-30	m 3		7,000			5, 250	5, 650		5, 500				
	粒度調整砕石	M-40	m 3		6, 900			5, 250	5, 650	5, 200	5, 500				
	単粒度砕石	4号30-20mm	m 3		7,600			6, 300		5, 900	6, 000				
	単粒度砕石	5号20-13mm	m 3		7, 600			6, 300		6, 000	6, 100				
	単粒度砕石	6 号 1 3 - 5 mm	m 3		7, 700			6, 300		6, 100	6, 100				
	単粒度砕石	7号5-2.5mm	m 3		7, 700			6, 300		6, 200	6, 100				
	割栗石	50-150mm	m 3		8, 300			5, 700		7, 100	6, 500				
	割栗石	1 5 0 - 2 0 0 mm	m 3		8,800			6, 700			7, 000				
	砂	クッション用	m 3												

種 別

骨材・砕石・割栗石等

2025年11月

単位:円

中部地方整備局

三重 2 4 品 目 規 格 単 位 考 409三 404三 405三 407三 408三 412三 413三 421三 422三 423三 松阪市 大台町 紀伊長 尾鷲北 津市 久居市 飯高町 伊勢市 大宮町 尾鷲南 単粒度砕石 3号40-30mm m 3 切込砕石 40mm~0mm m 3 5,000 5,000 栗石 中150~200mm m 3 コンクリート用骨材 砂利 25mm (洗い) m 3 5,400 5,500 5,600 9,500 10, 200 10, 200 コンクリート用骨材 砂 洗い 荒目 5, 400 m 3 5,500 5,600 10, 200 10, 500 10,500 コンクリート用骨材 砂 洗い 細目 m 3 コンクリート用骨材 砕石 $4.0 \sim 5 \, \text{mm}$ m 3 クラッシャーラン C - 20m 3 クラッシャーラン C - 30m 3 C - 405,000 クラッシャーラン m 3 5,000 5, 100 8,300 9,400 9,400 再生クラッシャーラン RC-30 m 3 再生クラッシャーラン RC-40 m 3 2, 100 2,200 2,700 2,300 4,500 4,700 4,700 粒度調整砕石 M - 25m 3 粒度調整砕石 M - 30m 3 5,300 5, 300 5, 200 8,500 9,600 9,600 5, 900 粒度調整砕石 M - 40m 3 5,300 5, 300 5, 200 単粒度砕石 4号30-20mm m 3 5,500 5, 400 5, 300 9,000 9,500 9,500 単粒度砕石 5号20-13mm m 3 5,600 5, 500 5, 400 9,300 9,800 9,800 単粒度砕石 6号13-5mm 5,600 5, 500 5, 400 9, 300 9,800 9,800 m 3 単粒度砕石 7号5-2.5mm m 3 5,600 5,500 5, 400 9,300 9,800 9,800 割栗石 5,900 9,600 10, 200 $50 - 150 \,\mathrm{mm}$ 5, 300 5, 200 10, 200 m 3 割栗石 $150 - 200 \,\mathrm{mm}$ m 3 6, 100 5, 500 5, 400 9,800 10,500 10,500 クッション用 3, 400 3,500 m 3

種 別 骨材・砕石・割栗石等 中部地方整備局 単位:円 三重24 品 目 規 格 単 位 備 考 426三 御浜南 425三 427三 4 2 4 三 熊野南 熊野外 上野市 単粒度砕石 3号40-30mm m 3 切込砕石 4 0 mm~ 0 mm m 3 5,000 栗石 中150~200mm m 3 コンクリート用骨材 砂利 25mm (洗い) m 3 10, 200 コンクリート用骨材 砂 洗い 荒目 10, 500 m 3 コンクリート用骨材 砂 洗い 細目 m 3 コンクリート用骨材 砕石 $40 \sim 5 \,\mathrm{mm}$ m 3 クラッシャーラン C - 20m 3 クラッシャーラン C - 30m 3 クラッシャーラン C - 409,400 m 3 再生クラッシャーラン RC-30 m 3 再生クラッシャーラン RC-40 m 3 4,700 粒度調整砕石 M - 25m 3 粒度調整砕石 M - 30m 3 9,600 粒度調整砕石 M - 40m 3 単粒度砕石 4号30-20mm m 3 9,500 単粒度砕石 5号20-13mm m 3 9,800 単粒度砕石 6号13-5mm m 3 9,800 単粒度砕石 7号5-2.5mm m 3 9,800 割栗石 50-150mm 10, 200 m 3 150-200mm 10, 500 割栗石 m 3 クッション用 m 3

種 別

アスファルト合材

2025年11月

中部地方整備局

単位:円 長野20 岐阜21 品 目 規 格 単 位 考 503長 504長 505長 506長 507長 509長 102岐 103岐 104岐 105岐 阿智村 坂内村 根尾北 伊那市 飯田市 大鹿村 南木曽 塩尻市 藤橋南 根尾中 アスファルト合材割増額 夜間割増 1,000 アスファルト混合物 開粒度アスコン (13) 粗粒度アスコン (20) 14, 900 アスファルト混合物 14,900 14, 900 アスファルト混合物 密粒度アスコン (20) 15, 200 15, 200 15, 200 密粒度アスコン (13) アスファルト混合物 細粒度アスコン (13) アスファルト混合物 アスファルト混合物 密粒度アスコン (13F) アスファルト混合物 細粒度アスコン (13F) 18, 500 アスファルト混合物 密粒度アスコン (20F) 18, 100 再生アスファルト混合物 再生細粒度アスコン(13F) 17, 700 17, 400 15, 900 再生アスファルト混合物 再生粗粒度アスコン(20) 16, 900 16,600 15, 100 13,900 13, 900 13,900 再生アスファルト混合物 再生密粒度アスコン(20) 16, 900 15, 400 14, 200 14, 200 14, 200 17, 200 14, 200 再生アスファルト混合物 再生密粒度アスコン(13) 16, 900 15, 400 14,500 14, 500 14,500 14, 500 再生アスファルト混合物 再生細粒度アスコン(13) 17,600 17, 300 15, 800 15, 200 15, 200 15, 200 15, 200 改質アスファルト混合物 改質As 密粒 I I型 (20) DS3000 19,900 20, 400 21,000 20, 700 22, 200 19, 200 17, 400 17, 400 17, 400 改質アスファルト混合物 改質As 粗粒 I I型 (20) DS5000 19,600 20, 100 20,700 20, 400 21,900 18,900 アスファルト混合物(安定処理材) 瀝青安定処理材(40) 16,800 16, 500 15,000 14,500 14, 500 14, 500 再生瀝青安定処理材(40) 16,000 15, 700 14, 200 13,500 13, 500 13, 500 再生アスファルト混合物 (安定処理材) 再生アスファルト混合物 (安定処理材) 再生AS安定処理(30) 13, 500 13,500 13, 500 13,500 再生加熱AS混合物(安定処理材) 再生AS安定処理25 アスファルト混合物 ポーラスアスファルト混合物(20) アスファルト混合物 ポーラスアスファルト混合物(13)

材料 単価【設計】

2025年11月

種 別	アスファルト合材												中部地方整備	局 単位	:: 円
								岐阜	2 1						
	品目	規格	単位	106岐 根尾南	107岐 揖斐川	109岐 大垣市	110岐 岐阜市	119岐関市		123岐 美濃加	1 2 4 岐 御嵩町	125岐 八百津	126岐 自川中	備	考
	アスファルト合材割増額	夜間割増	t								500				
	アスファルト混合物	開粒度アスコン (13)	t								13, 200	13, 600			
	アスファルト混合物	粗粒度アスコン (20)	t	14, 900							13, 000	13, 400			
	アスファルト混合物	密粒度アスコン (20)	t	15, 200							13, 300	13, 700			
	アスファルト混合物	密粒度アスコン (13)	t								13, 600	14, 000			
	アスファルト混合物	細粒度アスコン (13)	t								14, 300	14, 700			
	アスファルト混合物	密粒度アスコン (1 3F)	t												
	アスファルト混合物	細粒度アスコン (13F)	t												
	アスファルト混合物	密粒度アスコン (2 0F)	t												
	再生アスファルト混合物	再生細粒度アスコン(13F)	t												
	再生アスファルト混合物	再生粗粒度アスコン(20)	t	13, 900							12,000	12, 400	12, 400		
	再生アスファルト混合物	再生密粒度アスコン(20)	t	14, 200							12, 300	12, 700	12, 700		
	再生アスファルト混合物	再生密粒度アスコン(13)	t	14, 500							12, 600	13, 000	13, 000		
	再生アスファルト混合物	再生細粒度アスコン(13)	t	15, 200							13, 300	13, 700	13, 700		
	改質アスファルト混合物	改質As 密粒 I I型 (20) DS3000	t	17, 400	16, 400	15, 900	15, 900	16, 000		15, 500	15, 500	15, 900	15, 900		
	改質アスファルト混合物	改質As 粗粒 I I型 (20) DS5000	t		16, 200	15, 700	15, 700	15, 800		15, 300	15, 300	15, 700	15, 700		
	アスファルト混合物 (安定処理材)	瀝青安定処理材(40)	t	14, 500							12, 600	13, 000	13, 000		
	再生アスファルト混合物(安定処理材)	再生瀝青安定処理材(40)	t	13, 500							11,600	12, 000	12, 000		
	再生アスファルト混合物(安定処理材)	再生AS安定処理 (30)	t	13, 500	12, 500	12, 000	12, 000	12, 100		11, 600	11, 600	12, 000	12, 000		
	再生加熱AS混合物(安定処理材)	再生AS安定処理25	t												
	アスファルト混合物	ポーラスアスファルト混合物(20)	t								19, 200	19, 600	19, 600		
	アスファルト混合物	ポーラスアスファルト混合物(13)	t								19, 300	19, 700	19, 700		

材 料 単 価 【設計】

2025年11月___

種 別	アスファルト合材											ı	中部地方整備	局 単位	: 円
								岐阜	2 1						
	品目	規格	単位	131岐 多治見	132岐 瑞浪市	133岐 恵那南	134岐 中津川			146岐 金山町	1 4 7 岐 下呂町	156岐 高山西	157岐 久々野	備	考
	アスファルト合材割増額	夜間割増	t		500								1,000		
	アスファルト混合物	開粒度アスコン(13)	t		12, 900					14, 600			16, 300		
	アスファルト混合物	粗粒度アスコン (20)	t		12, 700					13, 800			15, 500		
	アスファルト混合物	密粒度アスコン (20)	t		13, 000					14, 300			16, 000		
	アスファルト混合物	密粒度アスコン (13)	t		13, 300					14, 800			16, 500		
	アスファルト混合物	細粒度アスコン (13)	t		14, 000					15, 600			17, 300		
	アスファルト混合物	密粒度アスコン (1 3F)	t							15, 300			17, 000		
	アスファルト混合物	細粒度アスコン (1 3F)	t												
	アスファルト混合物	密粒度アスコン (2 0 F)	t							14, 800			16, 500		
	再生アスファルト混合物	再生細粒度アスコン(13F)	t												
	再生アスファルト混合物	再生粗粒度アスコン(20)	t		11, 700				14, 400	13, 800			15, 500		
	再生アスファルト混合物	再生密粒度アスコン (20)	t		12, 000				14, 700	14, 300			16, 000		
	再生アスファルト混合物	再生密粒度アスコン(13)	t		12, 300				15, 000	14, 800			16, 500		
	再生アスファルト混合物	再生細粒度アスコン(13)	t		13, 000				15, 700	15, 600			17, 300		
	改質アスファルト混合物	改質As 密粒 I I型(20)DS3000	t	15, 200	15, 200	15, 900	15, 900	17, 700	17, 900		17, 800	18, 400			
	改質アスファルト混合物	改質As 粗粒 I I型(20)DS5000	t	15, 000	15, 000	15, 700	15, 700	17, 500	17, 700						
	アスファルト混合物(安定処理材)	瀝青安定処理材(40)	t		12, 300				15, 000	13, 400			15, 100		
	再生アスファルト混合物(安定処理材)	再生瀝青安定処理材(40)	t		11, 300				14, 000	13, 400			15, 100		
	再生アスファルト混合物(安定処理材)	再生AS安定処理(30)	t	11, 300	11, 300	12, 000	12, 000	13, 800	14, 000	13, 400	14, 500	15, 100	15, 100		
	再生加熱AS混合物(安定処理材)	再生AS安定処理25	t												
	アスファルト混合物	ポーラスアスファルト混合物(20)	t		18, 900										
	アスファルト混合物	ポーラスアスファルト混合物(13)	t		19, 000				21, 700						

種 別 アスファルト合材 中部地方整備局 単位:円 岐阜21 静岡 2 2 品 目 規 格 単 位 考 162岐 166岐 201静 205静 207静 208静 209静 210静 212静 214静 神岡西 古川町 下田市 中伊豆 沼津市 伊豆国 御殿未 小山未 富士未 富士川 夜間割増 500 アスファルト合材割増額 500 500 500 アスファルト混合物 開粒度アスコン (13) 16, 300 16, 300 16, 100 15, 200 14, 300 粗粒度アスコン (20) 15, 100 アスファルト混合物 15, 500 15, 500 22,000 16, 100 15, 200 14, 300 アスファルト混合物 密粒度アスコン (20) 16,000 16,000 22, 200 16, 300 15, 300 15, 400 14,600 アスファルト混合物 密粒度アスコン (13) 16,500 16,500 22, 400 16, 400 15, 400 15,500 14,700 細粒度アスコン (13) 17, 300 22, 800 16, 900 15, 900 16,000 15, 200 アスファルト混合物 17, 300 アスファルト混合物 密粒度アスコン (13F) 17,000 17,000 アスファルト混合物 細粒度アスコン (13F) アスファルト混合物 密粒度アスコン (20F) 16, 500 16, 500 再生アスファルト混合物 再生細粒度アスコン(13F) 15, 500 再生アスファルト混合物 再生粗粒度アスコン(20) 15, 500 15, 100 14, 100 14, 200 13, 300 再生アスファルト混合物 再生密粒度アスコン(20) 16,000 16,000 15, 300 14, 300 14, 400 13,600 再生アスファルト混合物 再生密粒度アスコン(13) 16,500 16, 500 15, 400 14, 400 14,500 13,700 再生アスファルト混合物 再生細粒度アスコン(13) 17, 300 17, 300 15, 900 14, 900 15,000 14, 200 17, 400 改質アスファルト混合物 改質As 密粒 I I型 (20) DS3000 18, 400 17,500 17,500 16, 700 改質アスファルト混合物 改質As 粗粒 I I型 (20) DS5000 18, 100 17, 100 17, 200 17, 200 アスファルト混合物(安定処理材) 瀝青安定処理材(40) 15, 100 15, 100 15, 400 14, 400 14,500 15, 100 15, 100 13,500 12,500 再生アスファルト混合物 (安定処理材) 再生瀝青安定処理材(40) 14, 400 再生アスファルト混合物 (安定処理材) 再生AS安定処理(30) 15, 100 15, 100 14, 400 13, 400 13,500 13,500 再生加熱AS混合物(安定処理材) 再生AS安定処理25 アスファルト混合物 ポーラスアスファルト混合物(20) アスファルト混合物 ポーラスアスファルト混合物(13) 20,900 20, 100

1 別 アスファルト合材											- 1	中部地方整備/	局 単位	: 円
	+11 +17);; (÷					静岡	2 2					/±±=	±z.
品目	規格	単位	2 1 5 静 芝川町	216静 静岡市	217静 静岡中	2 2 0 静 焼津市	221静 島田市	224静 吉田町	225静 掛川市	226静 袋井市	228静 天竜市	230静 水窪町	備	考
アスファルト合材割増額	夜間割増	t					500		500	500		500		
アスファルト混合物	開粒度アスコン (13)	t			15, 800			14, 500	14, 100	14, 000	14, 300	15, 500		
アスファルト混合物	粗粒度アスコン (20)	t			15, 800		14, 500	14, 500	14, 100	14, 000	14, 300	15, 500		
アスファルト混合物	密粒度アスコン (20)	t			16, 100		14, 800	14, 800	14, 400	14, 300	14, 600	15, 800		
アスファルト混合物	密粒度アスコン (13)	t			16, 200		14, 900	14, 900	14, 500	14, 400	14, 700	15, 900		
アスファルト混合物	細粒度アスコン (13)	t					15, 400	15, 400	15, 000	14, 900	15, 200	16, 400		
アスファルト混合物	密粒度アスコン (1 3F)	t												
アスファルト混合物	細粒度アスコン (13F)	t												
アスファルト混合物	密粒度アスコン (2 0F)	t												
再生アスファルト混合物	再生細粒度アスコン(13F)	t												
再生アスファルト混合物	再生粗粒度アスコン(20)	t			14, 800		13, 500	13, 500	13, 100	13, 000	13, 300	14, 500		
再生アスファルト混合物	再生密粒度アスコン(20)	t			15, 100		13, 800	13, 800	13, 400	13, 300	13, 600	14, 800		
再生アスファルト混合物	再生密粒度アスコン(13)	t			15, 200		13, 900	13, 900	13, 500	13, 400	13, 700	14, 900		
再生アスファルト混合物	再生細粒度アスコン(13)	t					14, 400		14, 000	13, 900	14, 200	15, 400		
改質アスファルト混合物	改質As 密粒 I I型 (20) DS3000	t		16, 800)	16, 900	16, 900		16, 500	16, 400		17, 900		
改質アスファルト混合物	改質As 粗粒 I I型 (20) DS5000	t				16, 600	16, 600		16, 200	16, 100				
アスファルト混合物 (安定処理材)	瀝青安定処理材(40)	t			15, 000		13, 700							
再生アスファルト混合物(安定処理材)	再生瀝青安定処理材(40)	t			14, 000		12, 700		12, 500	12, 400		13, 900		
再生アスファルト混合物 (安定処理材)	再生AS安定処理(30)	t			14, 000	12, 700	12, 700		12, 500	12, 400		13, 900		
再生加熱AS混合物(安定処理材)	再生AS安定処理25	t												
アスファルト混合物	ポーラスアスファルト混合物(20)	t												
アスファルト混合物	ポーラスアスファルト混合物(13)	t					20, 300		19, 900	19, 800				

材 料 単 価 【設計】

2025年11月

種 別	アスファルト合材												中部地方整備	司 単位	円
					静岡22					愛知23					
	品目	規格	単位	231静 浜松市		233静 湖西市	3 0 1 愛 名古屋	302愛 春日井	303愛 一宮市	304愛 津島市	305愛 大府市	308愛 岡崎市	3 1 0 愛 安城市	備	考
	アスファルト合材割増額	夜間割増	t		500	500				700					
	アスファルト混合物	開粒度アスコン(13)	t		14, 000	14, 000		13, 200	13, 200	13, 100	13, 100		13, 100		
	アスファルト混合物	粗粒度アスコン(20)	t		14, 000	14, 000		12, 500	12, 500	12, 400	12, 400		12, 900		
	アスファルト混合物	密粒度アスコン(20)	t		14, 300	14, 300		12, 700	12, 700	12, 600	12, 600		13, 100		
	アスファルト混合物	密粒度アスコン(13)	t		14, 400	14, 400		12, 800	12, 800	12, 700	12, 700		13, 200		
	アスファルト混合物	細粒度アスコン(13)	t		14, 900	14, 900		13, 300	13, 300	13, 200	13, 200		13, 700		
	アスファルト混合物	密粒度アスコン (1 3F)	t												
	アスファルト混合物	細粒度アスコン (1 3F)	t												
	アスファルト混合物	密粒度アスコン (2 0F)	t												
	再生アスファルト混合物	再生細粒度アスコン(13F)	t												
	再生アスファルト混合物	再生粗粒度アスコン(20)	t		13, 000	13, 000		10, 400	10, 400	10, 300	10, 300		11,000		
	再生アスファルト混合物	再生密粒度アスコン(20)	t		13, 300	13, 300		10, 600	10, 600	10, 500	10, 500		11, 200		
	再生アスファルト混合物	再生密粒度アスコン (13)	t		13, 400	13, 400		10, 700	10, 700	10, 600	10, 600		11, 300		
	再生アスファルト混合物	再生細粒度アスコン(13)	t		13, 900	13, 900		11, 200	11, 200	11, 100	11, 100		11,800		
	改質アスファルト混合物	改質As 密粒 I I型 (20) DS3000	t	16, 300	16, 400	16, 400	15, 400	15, 400	15, 400	15, 300	15, 300	15, 900	15, 700		
	改質アスファルト混合物	改質As 粗粒 I I型 (20) DS5000	t	16, 000	16, 100	16, 100	15, 100	15, 100	15, 100	15, 000	15, 000	15, 600	15, 400		
	アスファルト混合物(安定処理材)	瀝青安定処理材(40)	t					12, 000		11, 900			12, 600		
	再生アスファルト混合物(安定処理材)	再生瀝青安定処理材(40)	t		12, 400	12, 400		9, 900	9, 900	9, 800	10, 000		10, 700		
	再生アスファルト混合物(安定処理材)	再生AS安定処理(30)	t	12, 300	12, 400	12, 400	9, 900	9, 900	9, 900	9, 800		10, 900	10, 700		
	再生加熱AS混合物(安定処理材)	再生AS安定処理25	t				9, 900			9, 800		10, 900	10, 700		
	アスファルト混合物	ポーラスアスファルト混合物(20)	t												
	アスファルト混合物	ポーラスアスファルト混合物(13)	t		19, 800	19, 800		18, 200	18, 200	18, 100	18, 100		18, 500		

材 料 単 価 【設計】

2025年11月

種 別	アスファルト合材												中部地方整備	請局 単位	: 円
							愛知23					三重 2 4			
	品目	規格	単位	3 1 1 愛 豊田市	3 1 2 愛 足助町	3 1 3 愛 豊橋市	315愛 新城市	316愛 設楽町	3 1 7 愛 豊根村	3 2 6 愛 知多市	401三 桑名市		403三 鈴鹿市	備	考
	アスファルト合材割増額	夜間割増	t							700	1,000				
	アスファルト混合物	開粒度アスコン (13)	t		13, 500			15, 200	15, 700	13, 800					
	アスファルト混合物	粗粒度アスコン (20)	t		13, 300			15, 000	15, 500	13, 100					
	アスファルト混合物	密粒度アスコン (20)	t		13, 500			15, 200	15, 700	13, 300					
	アスファルト混合物	密粒度アスコン (13)	t		13, 600			15, 300	15, 800	13, 400					
	アスファルト混合物	細粒度アスコン (13)	t		14, 100			15, 800	16, 300	13, 900					
	アスファルト混合物	密粒度アスコン (13F)	t												
	アスファルト混合物	細粒度アスコン (13F)	t					16, 300							
	アスファルト混合物	密粒度アスコン (2 0F)	t												
	再生アスファルト混合物	再生細粒度アスコン (13F)	t												
	再生アスファルト混合物	再生粗粒度アスコン(20)	t		11, 600			13, 000	13, 500	11, 000	11, 100				
	再生アスファルト混合物	再生密粒度アスコン(20)	t		11, 800			13, 200	13, 700	11, 200	11, 200				
	再生アスファルト混合物	再生密粒度アスコン (13)	t		11, 900			13, 300	13, 800	11, 300	11, 300				
	再生アスファルト混合物	再生細粒度アスコン(13)	t		12, 400			13, 800	14, 300	11, 800	11, 700				
	改質アスファルト混合物	改質As 密粒 I I型 (20) DS3000	t	15, 400	16, 000	16, 100	16, 500			16, 000	15, 200	15, 200	17, 000		
	改質アスファルト混合物	改質As 粗粒 I I型 (20) DS5000	t	15, 100	15, 700	15, 800	16, 200			15, 700	15, 100	15, 100	16, 900		
	アスファルト混合物(安定処理材)	瀝青安定処理材(40)	t		13, 000			14, 500		12, 800	12, 100				
	再生アスファルト混合物(安定処理材)	再生瀝青安定処理材(40)	t		11, 300			12, 500		10, 700	10, 600				
	再生アスファルト混合物(安定処理材)	再生AS安定処理(30)	t	10, 700	11, 300	11, 400	11, 800	12, 500		10, 700	10, 600	10, 600	12, 300		
	再生加熱AS混合物(安定処理材)	再生AS安定処理25	t	10, 700	11, 300	11, 400		12, 500		10, 700	10, 600	10, 600			
	アスファルト混合物	ポーラスアスファルト混合物(20)	t								17, 800				
	アスファルト混合物	ポーラスアスファルト混合物(13)	t		18, 800			20, 000		18, 800	17, 900				

種 別 アスファルト合材 中部地方整備局 単位:円 三重 2 4 品 目 規 格 単 位 考 404三 405三 407三 408三 409三 4 1 2 三 413三 421三 422三 423三 紀伊長 久居市 松阪市 大台町 飯高町 伊勢市 大宮町 尾鷲北 尾鷲南 アスファルト合材割増額 夜間割増 1,000 1,000 1,000 アスファルト混合物 開粒度アスコン (13) 粗粒度アスコン (20) アスファルト混合物 アスファルト混合物 密粒度アスコン (20) 密粒度アスコン (13) アスファルト混合物 細粒度アスコン(13) アスファルト混合物 アスファルト混合物 密粒度アスコン (13F) アスファルト混合物 細粒度アスコン (13F) アスファルト混合物 密粒度アスコン (20F) 再生アスファルト混合物 再生細粒度アスコン(13F) 再生アスファルト混合物 再生粗粒度アスコン(20) 13, 400 13, 900 13,800 18,800 19, 100 19,500 再生アスファルト混合物 再生密粒度アスコン(20) 13, 500 14, 100 14, 700 14,000 19,000 19, 300 19,700 再生アスファルト混合物 再生密粒度アスコン(13) 13, 700 14, 200 14,800 14, 100 19, 100 19,400 19,800 再生アスファルト混合物 再生細粒度アスコン(13) 14,000 14, 700 14, 500 19,700 20,000 20, 400 改質アスファルト混合物 改質As 密粒 I I型 (20) DS3000 17, 100 17,600 17, 400 17,600 16, 900 17,500 20, 200 20, 500 20,900 改質アスファルト混合物 改質As 粗粒 I I型 (20) DS5000 17,000 17,500 17, 300 17,500 16,800 17, 400 20, 100 20, 400 20,800 アスファルト混合物(安定処理材) 瀝青安定処理材(40) 14, 400 14, 400 14, 300 18, 400 18, 700 19, 100 再生瀝青安定処理材(40) 12,900 13, 400 13, 300 18, 700 19, 100 再生アスファルト混合物 (安定処理材) 18, 400 再生アスファルト混合物 (安定処理材) 再生AS安定処理(30) 12, 400 12,900 13, 200 13, 400 12,700 13, 300 18, 400 18,700 19, 100 再生加熱AS混合物(安定処理材) 再生AS安定処理25 アスファルト混合物 ポーラスアスファルト混合物(20) 20, 200 20, 200 20,800 20, 100 22,900 23, 200 23,600 アスファルト混合物 ポーラスアスファルト混合物(13) 20, 300 20, 300 20, 200 23,000 23, 300 23, 700

種 別	アスファルト合材										中部地方整例	備局 単位	: 円
						三重	2 4						
	品目	規格	単	位	4 2 4 三 熊野南		426三 御浜南	4 2 7 三 上野市				備	考
	アスファルト合材割増額	夜間割増		t									
	アスファルト混合物	開粒度アスコン (13)		t									
	アスファルト混合物	粗粒度アスコン (20)		t									
	アスファルト混合物	密粒度アスコン (20)		t									
	アスファルト混合物	密粒度アスコン (13)		t									
	アスファルト混合物	細粒度アスコン (13)		t									
	アスファルト混合物	密粒度アスコン (1 3F)		t									
	アスファルト混合物	細粒度アスコン (1 3F)		t									
	アスファルト混合物	密粒度アスコン (2 0F)	-	t									
	再生アスファルト混合物	再生細粒度アスコン (13F)		t									
	再生アスファルト混合物	再生粗粒度アスコン (20)	-	t			19, 800						
	再生アスファルト混合物	再生密粒度アスコン (20)		t			20, 000						
	再生アスファルト混合物	再生密粒度アスコン (13)		t			20, 100						
	再生アスファルト混合物	再生細粒度アスコン (13)		t			20, 700						
	改質アスファルト混合物	改質As 密粒 I I 型 (2 0) DS3000		t	21, 100	21, 300	21, 200	17, 000					
	改質アスファルト混合物	改質As 粗粒 I I 型 (2 0) DS5000		t	21, 000	21, 200	21, 100	16, 900					
	アスファルト混合物 (安定処理材)	瀝青安定処理材(40)		t			19, 400						
	再生アスファルト混合物(安定処理材)	再生瀝青安定処理材(40)		t			19, 400						
	再生アスファルト混合物 (安定処理材)	再生AS安定処理(30)		t	19, 300	19, 500	19, 400	12, 600					
	再生加熱AS混合物(安定処理材)	再生AS安定処理25		t									
	アスファルト混合物	ポーラスアスファルト混合物(20)	+	t			23, 900						
	アスファルト混合物	ポーラスアスファルト混合物(13)	+	t			24, 000						
			+	_									
			+										

材 料 単 価

【設計】

2025年11月

種 別	山土																中部地方整備	i局 単位	: 円
										長野	2.0				岐阜	2.1			
		品	E	∄	規	格	単位	503長 伊那市	504長 飯田市	505長 大鹿村	506長 阿智村	507長 南木曽	509長 塩尻市	102岐 藤橋南	103岐 坂内村	104岐 根尾北	105岐 根尾中	備	考
	堤体土						m 3												
	衣土						m 3												

種 別 山土 中部地方整備局 単位:円 岐阜21 品 目 規 単 位 考 格 | 106岐 | 107岐 | 109岐 | 110岐 | 119岐 | 120岐 | 123岐 | 124岐 | 125岐 | 126岐 | 124岐 | 125岐 | 126岐 | 126b | 堤体土 5, 320 5, 320 5, 490 4,850 4, 180 4, 410 4,680 4,680 m 3 衣土 5, 450 5, 450 5,620 4, 980 4, 320 4, 540 4,810 4,810 m 3

種 別 中部地方整備局 単位:円 山土 岐阜21 単 位 品 目 規 考 格
 131岐
 132岐
 133岐
 134岐
 137岐
 140岐
 146岐
 147岐
 156岐
 157岐

 多治見
 瑞浪市
 恵那南
 中津川
 八幡外
 白鳥南
 金山町
 下呂町
 高山西
 久々野
 堤体土 3, 990 4, 410 4, 320 4, 320 3, 930 m 3 衣土 4, 120 4, 540 4, 450 4, 450 m 3

種 別 山土 中部地方整備局 単位:円 岐阜21 静岡 2 2 品 目 規 単位 考 格 | 162岐 | 166岐 | 201静 | 205静 | 207静 | 208静 | 209静 | 210静 | 212静 | 214静 | 21m| | 古川町 | 下田市 | 中伊豆 | 沼津市 | 伊豆国 | 御殿未 | 小山未 | 富士未 | 富士川 堤体土 4, 380 5,050 3,720 5, 180 5, 320 4,650 4,650 4,520 4,380 m 3 衣土 5, 510 4, 180 5, 650 5, 780 5, 120 5, 120 4,980 4,850 m 3

種 別 山土 中部地方整備局 単位:円 静岡 2 2 品 目 規 単 位 考 格
 217静
 220静
 221静
 224静
 225静
 226静
 228静
 230静

 静岡中
 焼津市
 島田市
 吉田町
 掛川市
 袋井市
 天竜市
 水窪町
 2 1 5 静 2 1 6 静 芝川町 静岡市 堤体土 3, 590 3, 590 3, 590 3, 590 3, 320 4, 250 3, 450 m 3 衣土 4,050 4,050 4,050 4,050 3, 790 4,720 3, 920 m 3

種 別 山土 中部地方整備局 単位:円 静岡22 愛知23 品 規 単 位 考 目 格
 233静
 301愛
 302愛
 303愛
 304愛
 305愛
 308愛
 310愛

 湖西市
 名古屋
 春日井
 一宮市
 津島市
 大府市
 岡崎市
 安城市
 2 3 1 静 2 3 2 静 浜松市 引佐町 堤体土 3, 450 3, 050 3,590 5,080 4, 520 4,680 4,520 5, 080 4, 380 4,520 m 3 3,920 3, 520 4,050 4, 780 4,650 4,780 衣土 m 3 5, 340 4,940

材 料 単 価 【設計】

2025年11月

種 別	山土						I								ı	中部地方整備	i局 単位	: 円
										愛知23					三重 2 4			
		品	目	規	格	単位	311愛豊田市	3 1 2 愛 足助町	3 1 3 愛 豊橋市	315愛 新城市	316愛 設楽町	3 1 7 愛 豊根村	3 2 6 愛 知多市	401三 桑名市	402三 四日市	403三 鈴鹿市	備	考
	堤体土					m 3	4, 520			4, 680	4, 680	4, 850	5, 080	3, 320	3, 320	3, 320		
	衣土					m 3	4, 780	4, 940	5, 120	4, 940			5, 340	3, 990	3, 990	3, 850		

2025年11月

材 料 単 価 【設計】

種 別 山土 中部地方整備局 単位:円 三重 2 4 品 目 規 単 位 考 格
 404三
 405三
 407三
 408三
 409三
 412三
 413三
 421三
 422三
 423三

 凍市
 久居市
 松阪市
 大台町
 飯高町
 伊勢市
 大宮町
 紀伊長
 尾鷲北
 尾鷲南
 堤体土 3, 320 3, 250 3, 320 3, 450 3, 190 m 3 衣土 3,650 3,720 3,850 m 3

種 別	山土									中部地方整体	備局 単位	: 円
	品目	規格	774 \T-		三重	2 4					備	
	品目	規格	単 仏	424三 熊野南	425三 熊野外	2 4 4 2 6 三 御浜南	4 2 7 三 上野市				1/用	考
	堤体土		m 3	6, 650		6, 650						
	衣土		m 3	-,,,,,		3,333	3, 720					
	以上		III 5				3, 120					
		·							 	-		

中部独自道路工事材料 2												ı	中部地方整備局	単位	: 円
		16	W 11			長野	2 0				岐阜	2 1			-14
品目	規	格	単位	503長 伊那市	504長 飯田市	505長 大鹿村	506長 阿智村	507長 南木曽	509長 塩尻市	102岐 藤橋南	103岐 坂内村	104岐 根尾北	105岐 根尾中	備	考
改質アスファルト混合物	密粒AS改質II型(20)((目標DS5000)	t	19, 900	20, 400	21,000	20, 700	22, 200	19, 200		17, 400	17, 400	17, 400		
改質アスファルト混合物	粗粒AS改質II型(20)([目標DS3000)	t	19, 600	20, 100	20, 700	20, 400	21, 900	18, 900		17, 200	17, 200	17, 200		
改質アスファルト混合物	砕石マスチック (13)		t												
改質アスファルト混合物	密粒AS改質III型-W(13)		t												
改質アスファルト混合物	粗粒AS改質III型-W(20)		t												
透水性アスファルト混合物	歩道用		t					18, 900							
アスファルト混合物	ポーラスアスファルト混合物(13)ポリマー	改質アスファルト ねじれ	t												
	品 目 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 透質アスファルト混合物	品 目 規 改質アスファルト混合物 密粒AS改質II型 (20) (改質アスファルト混合物 粗粒AS改質II型 (20) (改質アスファルト混合物 砕石マスチック (13) 改質アスファルト混合物 密粒AS改質III型-W (13) 改質アスファルト混合物 粗粒AS改質III型-W (20) 透水性アスファルト混合物 歩道用	思	品 目 規 格 単 位 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 改質アスファルト混合物 砕石マスチック(13) t 改質アスファルト混合物 密粒AS改質III型-W(13) t 改質アスファルト混合物 粗粒AS改質III型-W(20) t 透水性アスファルト混合物 歩道用 t	品目 規格 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 19,900 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 19,600 改質アスファルト混合物 砕石マスチック(13) t 改質アスファルト混合物 密粒AS改質III型-W(13) t 改質アスファルト混合物 粗粒AS改質III型-W(20) t 透水性アスファルト混合物 歩道用 t	品目 規格 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 19,900 20,400 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 19,600 20,100 改質アスファルト混合物 砕石マスチック(13) t 改質アスファルト混合物 密粒AS改質III型-W(13) t 改質アスファルト混合物 粗粒AS改質III型-W(20) t 透水性アスファルト混合物 サ道用 t	品目 規格 単位 長野 な質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 19,900 20,400 21,000 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 19,600 20,100 20,700 改質アスファルト混合物 砕石マスチック(13) t 改質アスファルト混合物 密粒AS改質III型-W(13) t 改質アスファルト混合物 粗粒AS改質III型-W(13) t 透水性アスファルト混合物 地位 地位 透水性アスファルト混合物 地道用 t	品目 規格 単位 長野20 503長 伊那市 物田市 大鹿村 阿智村 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 19,900 20,400 21,000 20,700 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 19,600 20,100 20,700 20,400 改質アスファルト混合物 砕石マスチック(13) t 改質アスファルト混合物 密粒AS改質III型-W(13) t 透水性アスファルト混合物 増粒AS改質III型-W(20) t 透水性アスファルト混合物 歩道用 t	品目 規格 単位 長野20 お質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 19,900 20,400 21,000 20,700 22,200 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 19,600 20,100 20,700 20,400 21,900 改質アスファルト混合物 砕石マスチック(13) t サンスファルト混合物 センステック(13) t 18,900 透水性アスファルト混合物 地質アスファルト混合物 地粒AS改質III型-W(20) t 18,900	提加 上海 上海 上海 上海 上海 上海 上海 上	提野 2 0 長野 2 0 大鹿村 阿智村 南木曽 塩尻市 藤橋南 塩買アスファルト混合物 揺粒A S改質II型(2 0)(目標D S 3 0 0 0)	提野 2 0	日 日 根格 単 位 長野 2 0 岐阜 2 1	日 規 格 単 位 長野20 岐阜21	田 日 規 格 単 位 長野20 岐阜21 102岐 103岐 104岐 105岐 根尾中 横原アスファルト混合物 総位AS改質II型(20)(目標DS5000) t 19,900 20,400 21,000 20,700 22,200 19,200 17,400 17,400 17,400 17,400 17,200 改質アスファルト混合物 担位AS改質II型(20)(目標DS3000) t 19,600 20,100 20,700 20,400 21,900 18,900 17,200

種 別 中部独自道路工事材料 2 中部地方整備局 単位:円 岐阜21 品 目 規 格 単 位 考 1 1 0 岐 1 1 9 岐 1 2 0 岐 1 2 3 岐 岐阜市 関市 美濃中 美濃加 106岐 107岐 109岐 124岐 125岐 126岐 根尾南 揖斐川 大垣市 御嵩町 八百津 白川中 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) 16, 400 15, 900 15, 900 16,000 15, 500 15,500 15, 900 15, 900 17, 400 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) 17, 200 16, 200 15, 700 15, 700 15, 800 15, 300 15, 300 15, 700 15, 700 改質アスファルト混合物 砕石マスチック (13) 20, 700 20,700 21, 200 改質アスファルト混合物 密粒AS改質III型-W(13) 21,700 21, 200 21, 300 20,800 20,800 21, 200 21, 200 改質アスファルト混合物 粗粒AS改質III型-W(20) 20, 500 20,000 20,000 20, 100 19,600 19,600 20,000 20,000 14, 200 14, 200 透水性アスファルト混合物 歩道用 14, 700 14, 200 14, 300 13,800 13,800 14, 200 アスファルト混合物 ポーラスアスファルト混合物(13)ポリマー改質アスファルト ねじれ

種 別 中部独自道路工事材料 2 中部地方整備局 単位:円 岐阜21 品 目 規 格 単 位 考 131岐 132岐 133岐 134岐 137岐 140岐 146岐 147岐 156岐 157岐 多治見 瑞浪市 恵那南 中津川 八幡外 白鳥南 金山町 下呂町 高山西 久々野 密粒AS改質II型(20)(目標DS5000) 改質アスファルト混合物 15, 200 15, 900 15, 900 17, 700 17, 900 16, 700 17,800 18, 400 15, 200 18, 400 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) 15,000 15,000 15, 700 15, 700 17, 500 17, 700 16, 500 17,600 18, 200 18, 200 改質アスファルト混合物 砕石マスチック (13) 20, 400 20, 400 改質アスファルト混合物 密粒AS改質III型-W(13) 20, 500 20,500 21, 200 21, 200 22,800 23,000 22, 200 23, 300 23, 900 23, 900 22, 700 改質アスファルト混合物 粗粒AS改質III型-W(20) 19, 300 19, 300 20,000 20,000 21,600 21,800 20,800 22, 700 21,900 16,000 16, 900 透水性アスファルト混合物 歩道用 13, 500 13, 500 14, 200 14, 200 16, 200 15, 200 16, 300 16, 900 アスファルト混合物 ポーラスアスファルト混合物(13)ポリマー改質アスファルト ねじれ

種 別 中部独自道路工事材料 2 中部地方整備局 単位:円 岐阜21 静岡 2 2 品 目 規 格 単 位 考 162岐 166岐 201静 205静 207静 208静 209静 210静 212静 214静 神岡西 古川町 下田市 中伊豆 伊豆国 御殿未 小山未 富士未 沼津市 富士川 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) 18, 400 18, 400 17, 400 17, 500 17,500 16, 700 16, 700 18, 400 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) 18, 200 18, 200 18, 100 17, 100 17, 200 17, 200 16, 400 16, 400 改質アスファルト混合物 砕石マスチック (13) 改質アスファルト混合物 密粒AS改質III型-W(13) 23, 900 23,900 23, 200 23, 300 23, 300 22, 500 22,500 改質アスファルト混合物 粗粒AS改質III型-W(20) 22, 700 22, 700 22, 700 22, 800 22,800 22,000 22,000 14, 300 透水性アスファルト混合物 歩道用 16, 900 16, 900 16, 100 15, 100 15, 200 15, 200 14, 300 アスファルト混合物 ポーラスアスファルト混合物(13)ポリマー改質アスファルト ねじれ

種 別	中部独自道路工事材料 2												中部地方整備局	局 単位	: 円
		10 16						静岡	2 2						
	品目	規格	単位	2 1 5 静 芝川町	216静 静岡市	2 1 7 静 静岡中	220静 焼津市	2 2 1 静 島田市	2 2 4 静 吉田町	225静 掛川市	2 2 6 静 袋井市	228静 天竜市	230静 水窪町	備	考
	改質アスファルト混合物	密粒AS改質II型(20)(目標DS5000)	t		16, 800		16, 900	16, 900		16, 500	16, 400				
	改質アスファルト混合物	粗粒AS改質II型(20)(目標DS3000)	t		16, 500		16, 600	16, 600		16, 200	16, 100		17, 600		
	改質アスファルト混合物	砕石マスチック (13)	t				20, 900			20, 500					
	改質アスファルト混合物	密粒AS改質III型-W(13)	t		22, 600		22, 700	22, 700		22, 300	22, 200				
	改質アスファルト混合物	粗粒AS改質III型-W(20)	t		22, 100		22, 200	22, 200		21, 800	21, 700				
	透水性アスファルト混合物	歩道用	t		14, 400		14, 500	14, 500		14, 100	14, 000		15, 500		
	アスファルト混合物	ポーラスアスファルト混合物(13)ポリマー改質アスファルト ねじれ	t												

種 別 中部独自道路工事材料 2 中部地方整備局 単位:円 静岡22 愛知23 品 目 規 格 単 位 考 231静 232静 233静 301愛 302愛 303愛 304愛 305愛 308愛 310愛 浜松市 引佐町 湖西市 名古屋 春日井 一宮市 津島市 岡崎市 安城市 密粒AS改質II型(20)(目標DS5000) 改質アスファルト混合物 16, 400 15, 400 15, 400 15, 300 15, 300 15, 700 16, 300 16, 400 15, 400 15, 900 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) 16,000 16, 100 16, 100 15, 100 15, 100 15, 100 15,000 15,000 15,600 15, 400 改質アスファルト混合物 砕石マスチック (13) 20, 300 19, 500 19, 400 改質アスファルト混合物 密粒AS改質III型-W(13) 22, 100 22, 200 22, 200 22, 900 22, 900 22, 900 22,800 22, 400 改質アスファルト混合物 粗粒AS改質III型-W(20) 21,600 21, 700 21,700 22, 400 22, 300 22, 400 透水性アスファルト混合物 歩道用 13, 900 14,000 14,000 13, 200 13, 200 13, 200 13, 100 13, 100 13, 300 13, 100 アスファルト混合物 ポーラスアスファルト混合物(13)ポリマー改質アスファルト ねじれ 25, 200 25, 100 25, 700 25, 500

中部独自道路工事材料 2												中部地方整備局	単位:	: 円
						愛知23					三重24			
品 目	規 格	単位	3 1 1 愛 豊田市	3 1 2 愛 足助町	3 1 3 愛 豊橋市	3 1 5 愛 新城市	3 1 6 愛 設楽町	3 1 7 愛 豊根村	3 2 6 愛 知多市	401三 桑名市	402三四日市	403三 鈴鹿市	備	考
改質アスファルト混合物	密粒AS改質II型(20)(目標DS5000)	t	15, 400	16, 000	16, 100	16, 500			16, 000	15, 200	15, 200	17, 000		
改質アスファルト混合物	粗粒AS改質II型(20)(目標DS3000)	t	15, 100	15, 700	15, 800	16, 200			15, 700	15, 100	15, 100	16, 900		
改質アスファルト混合物	砕石マスチック (13)	t				20, 600			20, 100					
改質アスファルト混合物	密粒AS改質III型-W(13)	t								23, 900	23, 900			
改質アスファルト混合物	粗粒AS改質III型-W(20)	t								23, 700	23, 700			
透水性アスファルト混合物	歩道用	t	12, 900	13, 500	14, 100	14, 500	15, 200		13, 800	12, 500	12, 500	14, 300		
アスファルト混合物	ボーラスアスファルト混合物(13)ボリマー改質アスファルト ねじれ	t	25, 200											
	品 目 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 透質アスファルト混合物	品 目 規 格	品 目 規 格 単 位 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 改質アスファルト混合物 根粒AS改質II型(20)(目標DS3000) t 改質アスファルト混合物 砕石マスチック(13) t 改質アスファルト混合物 密粒AS改質III型-W(13) t 改質アスファルト混合物 相粒AS改質III型-W(20) t 透水性アスファルト混合物 歩道用 t	田 規 格 単 位 3 1 1 愛豊田市 改質アスファルト混合物 密粒A S改質II型 (2 0) (目標D S 5 0 0 0) t 15,400 改質アスファルト混合物 粗粒A S改質II型 (2 0) (目標D S 3 0 0 0) t 15,100 改質アスファルト混合物 砕石マスチック (1 3) t 改質アスファルト混合物 密粒A S改質III型-W (1 3) t 改質アスファルト混合物 粗粒A S改質III型-W (2 0) t 透水性アスファルト混合物 歩道用 t 12,900	品目 規格 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 15,400 16,000 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 15,100 15,700 改質アスファルト混合物 砕石マスチック(13) t 改質アスファルト混合物 密粒AS改質III型-W(13) t 改質アスファルト混合物 粗粒AS改質III型-W(20) t 透水性アスファルト混合物 サ道用 t 12,900 13,500	用	品 月 規 格 単位 受知23 311愛 豊田市 311愛 豊田市 311愛 豊橋市 315愛 新城市 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 15,400 16,000 16,100 16,500 改質アスファルト混合物 租粒AS改質II型(20)(目標DS3000) t 15,100 15,700 15,800 16,200 改質アスファルト混合物 砕石マスチック(13) t 20,600 改質アスファルト混合物 密粒AS改質III型-W(13) t 数質アスファルト混合物 透水性アスファルト混合物 粗粒AS改質III型-W(20) t 12,900 13,500 14,100 14,500	提 A A A A A A A A A	A	日	日 規 格 単 位 一	品目 規格 単位 選知了スファルト混合物 密粒AS改質II型(20)(目標DS5000) t 15,400 16,000 16,100 16,500 16,500 16,000 15,200 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 15,400 16,000 16,100 16,500 16,500 16,000 15,200 改質アスファルト混合物 相粒AS改質II型(20)(目標DS3000) t 15,100 15,700 15,800 16,200 15,700 15,100 改質アスファルト混合物 砕石マスチック(13) t 20,600 20,100 改質アスファルト混合物 密粒AS改質III型Ψ(13) t 20,600 20,100 改質アスファルト混合物 相粒AS改質III型Ψ(20) t 12,900 13,500 14,100 14,500 15,200 13,800 12,500 透水性アスファルト混合物 歩道用 t 12,900 13,500 14,100 14,500 15,200 13,800 12,500	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田

中部独自道路工事材料 2	中部地方整備局 単位:円													: 円
			三重 2 4											-1
品目	規格	単位	404三津市	405三 久居市	407三 松阪市	408三 大台町	409三 飯高町	4 1 2 三 伊勢市	4 1 3 三 大宮町	421三 紀伊長	4 2 2 三 尾鷲北	423三 尾鷲南	備	考
改質アスファルト混合物	密粒AS改質II型(20)(目標DS5000)	t	17, 100	17, 600	17, 400	17, 600		16, 900	17, 500	20, 200	20, 500	20, 900		
改質アスファルト混合物	粗粒AS改質II型(20)(目標DS3000)	t	17, 000	17, 500	17, 300	17, 500		16, 800	17, 400	20, 100	20, 400	20, 800		
改質アスファルト混合物	砕石マスチック (13)	t												
改質アスファルト混合物	密粒AS改質III型-W(13)	t									27, 400			
改質アスファルト混合物	粗粒AS改質III型-W(20)	t									27, 100			
透水性アスファルト混合物	歩道用	t	14, 400	14, 900	14, 700	14, 900		14, 200	14, 800	19, 100	19, 400	19, 800		
アスファルト混合物	ポーラスアスファルト混合物(13)ポリマー改質アスファルト ねじオ	l t												
	品 目 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 改質アスファルト混合物 透が性アスファルト混合物	田 規 格	品 目 規 格 単 位 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 改質アスファルト混合物 租粒AS改質II型(20)(目標DS3000) t 改質アスファルト混合物 砕石マスチック(13) t 改質アスファルト混合物 密粒AS改質III型-W(13) t 改質アスファルト混合物 粗粒AS改質III型-W(20) t 透水性アスファルト混合物 歩道用 t	品 目 規 格 単 位 404三津市	思ります。 現 格 単 位 404三 405三 次居市 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 17,100 17,600 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 17,000 17,500 改質アスファルト混合物 砕石マスチック(13) t 数質アスファルト混合物 密粒AS改質III型-W(13) t 改質アスファルト混合物 推粒AS改質III型-W(20) t 14,400 14,900 歩道用 t 14,400 14,900	用 規 格 単 位 404三 405三 人居市 松阪市 改質アスファルト混合物 密粒A S改質II型 (20) (目標DS5000) t 17,100 17,600 17,400 改質アスファルト混合物 相粒A S改質II型 (20) (目標DS3000) t 17,000 17,500 17,300 改質アスファルト混合物 砕石マスチック (13) t 数質アスファルト混合物 密粒A S改質III型-W (13) t 数質アスファルト混合物 密粒A S改質III型-W (13) t 14,400 14,900 14,700 透水性アスファルト混合物 歩道用 t 14,400 14,900 14,700	用 目 規 格 単 位 404三 405三 407三 408三 大台町 改質アスファルト混合物 密粒AS改質II型(20)(目標DS5000) t 17,100 17,600 17,400 17,600 改質アスファルト混合物 粗粒AS改質II型(20)(目標DS3000) t 17,000 17,500 17,300 17,500 改質アスファルト混合物 砕石マスチック(13) t 数質アスファルト混合物 密粒AS改質III型-W(13) t 数質アスファルト混合物 増粒AS改質III型-W(20) t 14,700 14,900 14,700 14,900	日 規 格 単 位 日 担 格 単 位 日 日 日 日 日 日 日 日 日	日 現 格 単 位 正重 2 4 4 0 4 三 4 0 7 三 4 0 8 三 4 0 9 三 6 8 前 町 日	日 現 格 単 位 三重 2 4 日 日 日 日 日 日 日 日 日	日 日 根 格 単 位 日 日 日 日 日 日 日 日 日	田 目 規 格 単 位 日	田 目 規 格 単位 404三 405三 407三 408三 409三 412三 413三 421三 422三 423三 津市 久居市 大台町 板原市 大台町 最高町 伊勢市 大宮町 紀伊長 尾鷲北 尾鷲南 改質アスファルト混合物 密粒AS改質Ⅱ型(20)(目標DS3000) t 17,100 17,600 17,400 17,600 16,900 17,500 20,200 20,500 20,900 改質アスファルト混合物 租粒AS改質Ⅱ型(20)(目標DS300) t 17,000 17,500 17,300 17,500 16,800 17,400 20,100 20,400 20,800 改質アスファルト混合物 砕石マスチック(13) t	田 月 格 単 位 日本 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日

種 別	中部独自道路工事材料 2											中部地方整備	情局 単位:	: 円
	品目		単位一	三重24										
		規格		424三 熊野南	425三 熊野外	426三 御浜南	427三 上野市						備	考
	改質アスファルト混合物	密粒AS改質II型(20)(目標DS5000)	t	21, 100	21, 300									
	改質アスファルト混合物	粗粒AS改質II型(20)(目標DS3000)	t	21, 000	21, 200	21, 100	16, 900							
	改質アスファルト混合物	砕石マスチック(13)	t											
	改質アスファルト混合物	密粒AS改質III型-W(13)	t											
	改質アスファルト混合物	粗粒AS改質III型-W(20)	t											
	透水性アスファルト混合物	歩道用	t	20,000	20, 200	20, 100								
	アスファルト混合物	ボーラスアスファルト混合物(13)ボリマー改質アスファルト ねじれ	t											

種 別 連節・積ブロック 中部地方整備局 単位:円 岐阜21 長野20 品 単 位 目 規 格 考 505長 506長 507長 大鹿村 阿智村 南木曽 103岐 104岐 105岐 坂内村 根尾北 根尾中 504長 飯田市 503長 509長 102岐 伊那市 塩尻市 藤橋南 連節ブロック (護岸用) 凸型 50×30×15cm 個 1,560 1,560 1,560 1,500 1,500 1,500 1,500 コンクリート積ブロック JIS滑面 150kg/個未満 m 2 7, 310 7,310 7,310 7,310 コンクリート積ブロック JIS粗面 150kg/個未満 7,500 7,500 7,500 7,500 7, 905 7, 905 7, 905 7, 905 m 2 控350 間知ブロック 個 750 750 750 860 860 間知ブロック 控350 7,500 7,500 7,500 7,500 7,500 7,500 7, 310 7,310 7,310 7,310 m 2

種 別 連節・積ブロック 中部地方整備局 単位:円 岐阜21 品 単 位 目 規 格 考 1 1 0 岐 1 1 9 岐 1 2 0 岐 1 2 3 岐 岐阜市 関市 美濃中 美濃加 109岐 大垣市 106岐 107岐 124岐 125岐 126岐 根尾南 揖斐川 御嵩町 八百津 白川中 連節ブロック (護岸用) 凸型 50×30×15cm 個 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 コンクリート積ブロック JIS滑面 150kg/個未満 6,970 m 2 7, 140 7, 140 7,310 6,970 6,970 7, 140 6,970 コンクリート積ブロック JIS粗面 150kg/個未満 7, 735 7, 735 7, 905 7, 565 7, 565 7, 565 7, 735 7, 565 m 2 控350 間知ブロック 個 860 820 820 820 間知ブロック 控350 7, 140 7, 140 7,310 6,970 6,970 6,970 7, 140 6,970 m 2

種 別 連節・積ブロック 中部地方整備局 単位:円 岐阜21 品 単 位 目 規 格 考 134岐 137岐 140岐 146岐 中津川 八幡外 白鳥南 金山町 131岐 多治見 132岐 瑞浪市 133岐 恵那南 147岐 156岐 157岐 下呂町 高山西 久々野 連節ブロック (護岸用) 凸型 50×30×15cm 個 1,500 1,500 1,500 1,500 1,500 コンクリート積ブロック JIS滑面 150kg/個未満 m 2 7, 140 7, 140 6,970 6,970 7, 140 7,310 7, 310 7,310 7, 565 7, 565 コンクリート積ブロック JIS粗面 150kg/個未満 7, 735 7, 735 7, 565 7, 565 7, 735 7, 905 7, 905 7, 905 7, 990 7, 990 m 2 控350 間知ブロック 個 840 840 860 860 890 間知ブロック 控350 7, 140 7, 140 6,970 6,970 7, 140 7,310 7, 310 7,310 7, 565 7, 565 m 2

種 別 連節・積ブロック 中部地方整備局 単位:円 岐阜21 静岡 2 2 単 位 品 目 規 格 考 162岐 166岐 201静 208静 209静 205静 207静 210静 212静 214静 神岡西 古川町 下田市 中伊豆 沼津市 伊豆国 御殿未 小山未 富士未 富士川 連節ブロック (護岸用) 凸型 50×30×15cm 個 コンクリート積ブロック JIS滑面 150kg/個未満 m 2 7, 565 7, 565 6,603 6, 231 6, 231 6, 231 6, 417 6, 417 6, 138 6, 231 コンクリート積ブロック JIS粗面 150kg/個未満 7, 990 7,990 6,603 6, 231 6, 231 6, 231 6, 417 6, 417 6, 138 6, 231 m 2 間知ブロック 控350 個 890 710 670 670 670 690 690 670 間知ブロック 控350 7, 565 7, 565 6,603 6, 231 6, 231 6, 231 6, 417 6, 417 6, 138 6, 231 m 2

種 別 連節・積ブロック 中部地方整備局 単位:円 静岡 2 2 品 単 位 目 規 格 考 2 1 7 静 静岡中 215静 216静 220静 221静 224静 225静 226静 228静 230静 芝川町 静岡市 焼津市 島田市 吉田町 掛川市 天竜市 水窪町 連節ブロック (護岸用) 凸型 50×30×15cm 個 コンクリート積ブロック JIS滑面 150kg/個未満 6,500 m 2 6,510 6,500 6,500 6,500 6, 500 6, 700 6,700 コンクリート積ブロック JIS粗面 150kg/個未満 m 2 6,510 6,500 6,500 6,500 6, 500 6, 500 6,700 6,700 控350 個 間知ブロック 700 650 650 650 650 650 670 間知ブロック 控350 6,500 6,500 6,500 6,500 6,500 6,700 6,700 m 2

種 別 連節・積ブロック 中部地方整備局 単位:円 静岡22 愛知23 品 目 規 格 単 位 考 302愛 303愛 304愛 305愛 春日井 一宮市 津島市 大府市 233静 湖西市 3 0 1 愛 名古屋 231静 232静 308愛 310愛 浜松市 引佐町 岡崎市 安城市 連節ブロック (護岸用) 凸型 50×30×15cm 個 1,500 1,500 1,500 1,500 1,500 1,500 コンクリート積ブロック JIS滑面 150kg/個未満 6,970 m 2 6,970 6,970 6,970 6,970 コンクリート積ブロック JIS粗面 150kg/個未満 7, 220 7, 220 7, 220 7, 220 7,220 m 2 個 間知ブロック 控350 650 820 820 820 間知ブロック 控350 6,500 6,500 6,970 6,970 6,970 6,970 6,970 6,970 m 2

種 別 連節・積ブロック 中部地方整備局 単位:円 三重 2 4 愛知23 単 位 品 目 規 格 考 3 1 5 愛 新城市 401三 402三 403三 桑名市 四日市 鈴鹿市 3 1 1 愛 豊田市 3 1 3 愛 豊橋市 316愛 317愛 326愛 設楽町 豊根村 知多市 312愛 足助町 連節ブロック (護岸用) 凸型 50×30×15cm 個 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 コンクリート積ブロック JIS滑面 150kg/個未満 6,970 6,970 m 2 6,970 6,970 6,970 9,879 9,879 9,879 コンクリート積ブロック JIS粗面 150kg/個未満 7, 220 7, 220 7, 220 7, 220 7, 220 8, 700 8,500 8,500 m 2 間知ブロック 控350 個 820 820 820 820 820 890 890 間知ブロック 控350 6,970 6,970 6,970 6,970 6,970 6,970 6,970 9,879 9,879 9,879 m 2

種 別 連節・積ブロック 中部地方整備局 単位:円 三重 2 4 品 単 位 目 規 格 考 407三 松阪市
 408三
 409三
 412三
 413三
 421三

 大台町
 飯高町
 伊勢市
 大宮町
 紀伊長
 405三 久居市 422三 423三 尾鷲北 尾鷲南 404三 津市 連節ブロック (護岸用) 凸型 50×30×15cm 個 1,500 1,500 1,500 1,500 1,500 1,500 コンクリート積ブロック JIS滑面 150kg/個未満 9, 879 m 2 9,879 9,879 9,879 9,879 10, 101 10, 101 10, 212 コンクリート積ブロック JIS粗面 150kg/個未満 m 2 8,500 8,500 8,700 8,700 8, 700 8,800 9,000 9,000 控350 個 間知ブロック 890 890 890 890 890 910 920 間知ブロック 控350 9,879 9,879 9,879 9,879 9, 879 10, 101 10, 101 10, 212 m 2

種 別	連節・積ブロック									中部地方整備	帯局 単位	: 円
					三重	2 4						
	品目	規格	単位	424三 熊野南	4 2 5 三 熊野外	426三 御浜南	4 2 7 三 上野市				備	考
	連節プロック(護岸用)	凸型 50×30×15cm	個									
	コンクリート積ブロック	JIS滑面 150kg/個未満	m 2	10, 212	10, 323	10, 212	9, 879					
	コンクリート積ブロック	JIS粗面 150kg/個未満	m 2	9, 200	9, 200	9, 200	8, 500					
	間知ブロック	控350	個	920	930	920	890					
	間知ブロック	控350	m 2	10, 212	10, 323	10, 212	9, 879					

土木工事設計材料 (公表) 単価一覧表

(2025年11月単価)

中部地方整備局

種 別	棒鋼										中部地方整備	請局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重 2 4				備	考
	鉄筋コンクリート用棒鋼	SR235 径9	t		150, 000			150, 000					
	鉄筋コンクリート用棒鋼	SR235 径13	t		144, 000			144, 000					
	鉄筋コンクリート用棒鋼	SR235 径16~25	t		142, 000			142, 000					
													-

種 別	セメント														 中部地方整備		: 円
		品	目		規	格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	硅砂			1~3号			kg										
														1			

種 別	鉄鋼・副資材費その他								 	中部地方整備	i局 単位	2:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24			備	考
	構造用丸鋼	SS400 径16	t		144, 000	144, 000		144, 000				
	構造用丸鋼	SS400 径32	t		146, 000	146, 000		146, 000				
	構造用丸鋼	SS400 径38	t		147, 000	147, 000		147,000				
	構造用丸鋼	SS400 径50	t		148, 000	148, 000		148, 000				
	構造用丸鋼	SS400 径60	t		154, 000	154, 000		154, 000				
	構造用丸鋼	SS400 径13	t		146, 000	146, 000		146, 000				
	構造用丸鋼	SS400 径25	t		144, 000	144, 000		144, 000				
	構造用丸鋼	SS400 径44	t		148, 000	148, 000		148, 000				
	構造用丸鋼	SS400 径48	t		148, 000	148, 000		148, 000				
	平鋼	SS400 4.5×25	t		144, 000	144, 000		144, 000				
	平鋼	SS400 4. 5×32~38	t		138, 000	138, 000		138, 000				
	平銅	SS400 4.5×50	t		138, 000	138, 000		138, 000				
	平鋼	SS400 6×25	t		140,000	140,000		140, 000				
	平銅	SS400 6×32~44	t		135, 000	135, 000		135, 000				
	平銅	SS400 6×50~75	t		130, 000	130, 000		130, 000				
	平鋼	SS400 6×90~100	t		130, 000	130, 000		130, 000				
	平銅	SS400 6×125	t		132, 000	132, 000		132, 000				
	平銅	SS400 9×25	t		140, 000	140, 000		140, 000				
	平銅	SS400 9×32~44	t		135, 000	135, 000		135, 000				
	平銅	SS400 9×50~75	t		130, 000	130, 000		130, 000				
	平銅	SS400 9×90~100	t		130, 000	130, 000		130, 000				
	平銅	SS400 9×125	t		132, 000	132, 000		132, 000				
	キーストン プレート (AKD)	SDP1 650×25×1.2	t		221,000	221,000		221, 000				
	しま鋼板	t = 3. 2	t		144, 000	144, 000		144, 000				
	しま鋼板	t = 4. 5	t		143, 000	143, 000		143, 000				

種 別	鉄鋼・副資材費その他												中部地方整体	備局 単位	: 円
	品目		規	格	単位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	しま鋼板	t = 6. 0			t		143, 000	143, 000		143, 000					
	しま鋼板	t = 9. 0			t		143, 000	143, 000		143, 000					
	構造用炭素鋼鋼管	STK400	径21.7	×1. 9	t		200, 000	200, 000		200, 000					
	構造用炭素鋼鋼管	STK400	径27.2	×1. 9	t		200, 000	200, 000		200, 000					
	構造用炭素鋼鋼管	STK400	径34.0	×2.3	t		198, 000	198, 000		198, 000					
	構造用炭素鋼鋼管	STK400	径42.7	×2.3	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径48.6	×2.3	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径48.6	×3. 2	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径60.5	×2.3	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径60.5	×3. 2	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径76.3	×2.8	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径76.3	×3. 2	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径89.1	×3. 2	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径89.1	×4. 2	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径101.	6 × 3. 2	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径101.	6 × 4. 2	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径114.	3×3. 5	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径114.	3×4. 5	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径139.	8 × 4. 5	t		195, 000	195, 000		195, 000					
	構造用炭素鋼鋼管	STK400	径165.	2×5. 0	t		200, 000	200, 000		200, 000					
	構造用炭素鋼鋼管	STK400	径190.	7×5. 3	t		200, 000	200, 000		200, 000					
	構造用炭素鋼鋼管	STK400	径216.	3×8. 2	t		200, 000	200, 000		200, 000					
	構造用炭素鋼鋼管	STK400	径267.	4×9. 3	t		200, 000	200, 000		200, 000					
	構造用炭素鋼鋼管	STK400	径318.	5×6.9	t		203, 000	203, 000		203, 000					
	構造用炭素鋼鋼管	STK400	径318.	5×10.3	t		203, 000	203, 000		203, 000					

種 別	鉄鋼・副資材費その他												中部地方整体	備局 単位	: 円
	品目		規	格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	構造用炭素鋼鋼管	STK400 径	355.6×	7. 9	t		203, 000	203, 000		203, 000					
	構造用炭素鋼鋼管	STK400 径	355.6×	11. 1	t		203, 000	203, 000		203, 000					
	構造用角形鋼管	STKR400	1. 6×50	× 5 0	t		180, 000	180,000		180, 000					
	構造用角形鋼管	STKR400	2. 3×50	× 5 0	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	1. 6×60	× 6 0	t		180, 000	180, 000		180, 000					
	構造用角形鋼管	STKR400	2. 3×60	× 6 0	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	2. 3×75	× 7 5	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	3. 2×75	× 7 5	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	2. 3×10	0 × 1 0 0	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	3. 2×10	0 × 1 0 0	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	4. 5×10	0 × 1 0 0	t		179, 000	179, 000		179, 000					
	構造用角形鋼管	STKR400	6. 0×10	0 × 1 0 0	t		179, 000	179, 000		179, 000					
	構造用角形鋼管	STKR400	3. 2×12	5 × 1 2 5	t		179, 000	179, 000		179, 000					
	構造用角形鋼管	STKR400	4. 5×12	5×125	t		179, 000	179, 000		179, 000					
	構造用角形鋼管	STKR400	4. 5×15	0 × 1 5 0	t		182,000	182, 000		182, 000					
	構造用角形鋼管	STKR400	6. 0×15	0 × 1 5 0	t		182,000	182, 000		182,000					
	構造用角形鋼管	STKR400	6. 0×17	5 × 1 7 5	t		184, 000	184, 000		184, 000					
	構造用角形鋼管	STKR400	1. 6×60	× 3 0	t		181, 000	181, 000		181, 000					
	構造用角形鋼管	STKR400	2. 3×60	× 3 0	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	2. 3×75	× 4 5	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	3. 2×75	× 4 5	t		178, 000	178, 000		178, 000					
	構造用角形鋼管	STKR400	2. 3×10	0 × 5 0	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	3. 2×10	0 × 5 0	t		176, 000	176, 000		176, 000					
	構造用角形鋼管	STKR400	2. 3×12	5 × 7 5	t		177, 000	177, 000		177, 000					
	構造用角形鋼管	STKR400	3. 2×12	5 × 7 5	t		177, 000	177, 000		177, 000					

種 別	鉄鋼・副資材費その他												中部地方整備	帯局 単位	1:円
	品目		規	格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	構造用角形鋼管	STKR400	4. 5×15	5 0 × 1 0 0	t		180, 000	180,000		180, 000					
	構造用角形鋼管	STKR400	6. 0×15	5 0 × 1 0 0	t		180, 000	180, 000		180, 000					
	構造用角形鋼管	STKR400	4. 5×20	0 0 × 1 0 0	t		182, 000	182, 000		182, 000					
	構造用角形鋼管	STKR400	6. 0×20	0 0 × 1 0 0	t		182, 000	182, 000		182, 000					
	1	1			1	1									

種別	鉄鋼二次製品								 	 中部地方整例	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	呼び線	着色塗装亜鉛メッキ鉄線(7種) φ 3. 2	m	23	23	23	23	23				
	ワイヤロープ	4号品 6×24 径6 A種	m		234. 00	234. 00		234. 00				
	ワイヤロープ	4号品 6×24 径8 A種	m		269. 00	269. 00		269.00				
	ワイヤロープ	4号品 6×24 径9 A種	m		295. 00	295. 00		295. 00				
	ワイヤロープ	4号品 6×24 径10 A種	m		328. 00	328.00		328.00				
	ワイヤロープ	4号品 6×24 径12 A種	m		417. 00	417. 00		417.00				
	ワイヤロープ	4号品 6×24 径14 A種	m		510.00	510.00		510.00				
	ワイヤロープ	4号品 6×24 径16 A種	m		631.00	631. 00		631.00				
	ワイヤロープ	4号品 6×24 径18 A種	m		768. 00	768. 00		768.00				
	ワイヤロープ	4号品 6×24 径20 A種	m		913. 00	913. 00		913.00				
	ワイヤロープ	4号品 6×24 径22 A種	m		1, 080. 00	1, 080. 00		1, 080. 00				
	ワイヤロープ	4号品 6×24 径24 A種	m		1, 250. 00	1, 250. 00		1, 250. 00				
	ワイヤロープ	4号品 6×24 径6 G種	m		303.00	303.00		303.00				
	ワイヤロープ	4号品 6×24 径8 G種	m		347. 00	347. 00		347.00				
	ワイヤロープ	4号品 6×24 径9 G種	m		376.00	376.00		376.00				
	ワイヤロープ	4号品 6×24 径10 G種	m		413.00	413.00		413.00				
	ワイヤロープ	4号品 6×24 径12 G種	m		530.00	530.00		530.00				
	ワイヤロープ	4号品 6×24 径14 G種	m		650.00	650.00		650.00				
	ワイヤロープ	4号品 6×24 径16 G種	m		799.00	799.00		799.00				
	ワイヤロープ	4号品 6×24 径18 G種	m		970.00	970.00		970.00				
	ワイヤロープ	4号品 6×24 径20 G種	m		1, 150. 00	1, 150. 00		1, 150. 00				
	ワイヤロープ	4号品 6×24 径22 G種	m		1, 370. 00	1, 370. 00		1, 370. 00				
	ワイヤロープ	4号品 6×24 径24 G種	m		1, 590. 00	1, 590. 00		1, 590. 00				
	ワイヤロープ	6号品 6×37 径10 A種	m		374.00	374. 00		374.00				
	ワイヤロープ	6号品 6×37 径12 A種	m		475. 00	475.00		475.00				

材 料 単 価 【設計】

2025年11月

種 別	鉄鋼二次製品									中部地方整備	局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	ワイヤロープ	6号品 6×37 径14 A種	m		580.00	580.00		580.00				
	ワイヤロープ	6号品 6×37 径16 A種	m		715.00	715. 00		715. 00				
	ワイヤロープ	6号品 6×37 径18 A種	m		866.00	866.00		866.00				
	ワイヤロープ	6号品 6×37 径20 A種	m		1, 030. 00	1, 030. 00		1, 030. 00				
	ワイヤロープ	6号品 6×37 径22 A種	m		1, 230. 00	1, 230. 00		1, 230. 00				
	ワイヤロープ	13号品 径12 B種	m		573.00	573. 00		573. 00				
	ワイヤロープ	13号品 径14 B種	m		698.00	698.00		698.00				
	ワイヤロープ	13号品 径16 B種	m		863.00	863. 00		863.00				
	ワイヤロープ	13号品 径18 B種	m		1,040.00	1, 040. 00		1, 040. 00				
	ワイヤロープ	13号品 径20 B種	m		1, 240. 00	1, 240. 00		1, 240. 00				
	ワイヤロープ	13号品 径22 B種	m		1, 480. 00	1, 480. 00		1, 480. 00				
	ワイヤロープ	14号品 径12 B種	m		597.00	597. 00		597.00				
	ワイヤロープ	14号品 径14 B種	m		727.00	727.00		727.00				
	ワイヤロープ	14号品 径16 B種	m		898.00	898. 00		898.00				
	ワイヤロープ	14号品 径18 B種	m		1, 080. 00	1, 080. 00		1, 080. 00				
	ワイヤロープ	14号品 径20 B種	m		1, 290. 00	1, 290. 00		1, 290. 00				
	ワイヤロープ	14号品 径22 B種	m		1, 530. 00	1, 530. 00		1, 530. 00				
	ワイヤロープ	18号品 径12 B種	m		638. 00	638. 00		638. 00				
	ワイヤロープ	18号品 径14 B種	m		776. 00	776. 00		776. 00				
	ワイヤロープ	18号品 径16 B種	m		965. 00	965. 00		965. 00				
	ワイヤロープ	18号品 径18 B種	m		1, 160. 00	1, 160. 00		1, 160. 00				
	ワイヤロープ	18号品 径20 B種	m		1, 380. 00	1, 380. 00		1, 380. 00				
	ワイヤロープ	18号品 径22 B種	m		1,640.00	1,640.00		1, 640. 00				
	ワイヤロープ	G/O 6×7 径8	m		285. 00	285. 00		285. 00				
	ワイヤロープ	G/O 6×7 径9	m		326.00	326.00		326.00				

鉄鋼二次製品											中部地方整備	備局 単位	: 円
品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24					備	考
ワイヤロープ	G/O 6×7 径10	m		361.00	361.00		361.00						
ワイヤロープ	G/O 6×7 径14	m		738. 00	738. 00		738. 00						
ワイヤロープ	G/O 6×7 径16	m		906. 00	906.00		906. 00						
ワイヤロープ	G/O 6×7 径18	m		1, 070. 00	1, 070. 00		1, 070. 00						
ワイヤロープ	G/O 6×7 径20	m		1, 270. 00	1, 270. 00		1, 270. 00						
ワイヤロープ	G/O 6×7 径28	m		2, 100. 00	2, 100. 00		2, 100. 00						
ワイヤロープ	G/O 6×7 径30	m		2, 480. 00	2, 480. 00		2, 480. 00						
ワイヤロープ	G/O 6×7 径40	m		4, 850. 00	4, 850. 00		4, 850. 00						
ワイヤロープ	O/O 6×19 径10	m		330. 00	330.00		330.00						
ワイヤロープ	O/O 6×19 径22	m		1, 120. 00	1, 120. 00		1, 120. 00						
	ワイヤロープ ワイヤロープ	品 目 規 格 ワイヤロープ G/O 6×7 径10 ワイヤロープ G/O 6×7 径14 ワイヤロープ G/O 6×7 径16 ワイヤロープ G/O 6×7 径18 ワイヤロープ G/O 6×7 径20 ワイヤロープ G/O 6×7 径20 ワイヤロープ G/O 6×7 径20 ワイヤロープ G/O 6×7 径28 ワイヤロープ G/O 6×7 径30 ワイヤロープ G/O 6×7 径40 ワイヤロープ O/O 6×19 径10	田 目 規 格 単 位 ワイヤロープ G/O 6×7 径10 m ワイヤロープ G/O 6×7 径14 m ワイヤロープ G/O 6×7 径16 m ワイヤロープ G/O 6×7 径18 m ワイヤロープ G/O 6×7 径20 m ワイヤロープ G/O 6×7 径20 m ワイヤロープ G/O 6×7 径28 m ワイヤロープ G/O 6×7 径28 m ワイヤロープ G/O 6×7 径30 m ワイヤロープ G/O 6×7 径40 m ワイヤロープ O/O 6×19 径10 m	田 目 規 格 単 位 長野20 ワイヤローブ G/O 6×7 径10 m ワイヤロープ G/O 6×7 径14 m ワイヤロープ G/O 6×7 径16 m ワイヤロープ G/O 6×7 径18 m ワイヤロープ G/O 6×7 径20 m ワイヤロープ G/O 6×7 径28 m ワイヤロープ G/O 6×7 径28 m ワイヤロープ G/O 6×7 径30 m ワイヤロープ G/O 6×7 径40 m ワイヤロープ O/O 6×19 径10 m	田 目 規 格 単 位 長野20 岐阜21 ワイヤローブ G/O 6×7 径10 m 361.00 ワイヤローブ G/O 6×7 径14 m 738.00 ワイヤローブ G/O 6×7 径16 m 906.00 ワイヤローブ G/O 6×7 径18 m 1,070.00 ワイヤローブ G/O 6×7 径20 m 1,270.00 ワイヤローブ G/O 6×7 径20 m 2,100.00 ワイヤローブ G/O 6×7 径28 m 2,100.00 ワイヤローブ G/O 6×7 径30 m 2,480.00 ワイヤローブ G/O 6×7 径40 m 4,850.00	思 目 規 格 単 位 長野20 岐阜21 静岡22 ワイヤローブ G/O 6×7 径10 m 361.00 361.00 ワイヤローブ G/O 6×7 径14 m 738.00 738.00 ワイヤローブ G/O 6×7 径16 m 906.00 906.00 ワイヤローブ G/O 6×7 径18 m 1,070.00 1,070.00 ワイヤローブ G/O 6×7 径20 m 1,270.00 1,270.00 ワイヤローブ G/O 6×7 径28 m 2,100.00 2,100.00 ワイヤローブ G/O 6×7 径30 m 2,480.00 2,480.00 ワイヤローブ G/O 6×7 径40 m 4,850.00 4,850.00 ワイヤローブ O/O 6×19 径10 m 330.00 330.00	田 目 規 格 単 位 長野20 岐阜21 静岡22 愛知23 ワイヤロープ G/O 6×7 径10 m 361.00 361.00 ワイヤロープ G/O 6×7 径14 m 738.00 738.00 ワイヤロープ G/O 6×7 径16 m 906.00 906.00 ワイヤロープ G/O 6×7 径18 m 1,070.00 1,070.00 ワイヤロープ G/O 6×7 径20 m 1,270.00 1,270.00 ワイヤロープ G/O 6×7 径28 m 2,100.00 2,100.00 ワイヤロープ G/O 6×7 径28 m 2,480.00 2,480.00 ワイヤロープ G/O 6×7 径40 m 4,850.00 4,850.00 ワイヤロープ G/O 6×7 径40 m 330.00 330.00	田 目 規 格 単 位 長野20 岐阜21 静岡22 愛知23 三重24 ワイヤロープ G/O 6×7 径10 m 361.00 361.00 361.00 ワイヤロープ G/O 6×7 径14 m 738.00 738.00 738.00 ワイヤロープ G/O 6×7 径16 m 906.00 906.00 906.00 ワイヤロープ G/O 6×7 径18 m 1,070.00 1,070.00 1,070.00 ワイヤロープ G/O 6×7 径20 m 1,270.00 1,270.00 1,270.00 ワイヤロープ G/O 6×7 径28 m 2,100.00 2,100.00 2,100.00 ワイヤロープ G/O 6×7 径30 m 2,480.00 2,480.00 2,480.00 ワイヤロープ G/O 6×7 径40 m 4,850.00 4,850.00 4,850.00 ワイヤロープ G/O 6×7 径40 m 330.00 330.00 330.00	田 目 規 格 単 位 _{長野20} 岐阜21 静岡22 愛知23 三重24 ワイヤローブ G/O 6×7 径10 m 361.00 361.00 361.00 ワイヤローブ G/O 6×7 径14 m 738.00 738.00 738.00 ワイヤローブ G/O 6×7 径16 m 906.00 906.00 906.00 ワイヤローブ G/O 6×7 径18 m 1,070.00 1,070.00 1,070.00 ワイヤローブ G/O 6×7 径20 m 1,270.00 1,270.00 1,270.00 ワイヤローブ G/O 6×7 径28 m 2,100.00 2,100.00 ワイヤローブ G/O 6×7 径30 m 2,480.00 2,480.00 ワイヤローブ G/O 6×7 径40 m 4,850.00 4,850.00 ワイヤローブ G/O 6×19 径10 m 330.00 330.00 330.00	出 目 規 格 単 位 長野20 岐阜21 静岡22 愛知23 三重24 ワイヤローブ G/O 6×7 径10 m 361.00 361.00 361.00 ワイヤローブ G/O 6×7 径14 m 738.00 738.00 738.00 ワイヤローブ G/O 6×7 径16 m 906.00 906.00 906.00 ワイヤローブ G/O 6×7 径18 m 1,070.00 1,070.00 1,070.00 ワイヤローブ G/O 6×7 径20 m 1,270.00 1,270.00 1,270.00 ワイヤローブ G/O 6×7 径28 m 2,100.00 2,100.00 2,100.00 ワイヤローブ G/O 6×7 径30 m 2,480.00 2,480.00 2,480.00 ワイヤローブ G/O 6×7 径40 m 4,850.00 4,850.00 4,850.00 ワイヤローブ O/O 6×19 径10 m 330.00 330.00 330.00	A 日 規 格 単 位 長野2 0 岐阜2 1 静岡2 2 愛知2 3 三重2 4	田 目 規 格 単 位 長野20 岐阜21 静岡22 愛知23 三重24 ワイヤローブ G/O 6×7 径10 m 361.00 361.00 361.00 ワイヤローブ G/O 6×7 径14 m 738.00 738.00 738.00 ワイヤローブ G/O 6×7 径16 m 906.00 906.00 906.00 ワイヤローブ G/O 6×7 径18 m 1,070.00 1,070.00 1,070.00 ワイヤローブ G/O 6×7 径20 m 1,270.00 1,270.00 ワイヤローブ G/O 6×7 径28 m 2,100.00 2,100.00 ワイヤローブ G/O 6×7 径30 m 2,480.00 2,480.00 ワイヤローブ G/O 6×7 径40 m 4,850.00 4,850.00 4,850.00 ワイヤローブ G/O 6×7 径40 m 330.00 330.00 330.00	出 目 規 格 単 位 長野20 岐阜21 静岡22 愛知23 三重24

種 別	コンクリート製品									中部地方整備	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重 2 4			備	考
	函渠型側溝(卵型)	排水性対応 D250 2m/個	個	42, 400. 00	38, 100. 00	38, 100. 00	35, 400. 00	38, 100. 00				
	函渠型側溝(卵型)	排水性対応 D300 2m/個	個	62, 200. 00	55, 900. 00	55, 900. 00	55, 900. 00	55, 900. 00				
	函渠型側溝(卵型)	排水性対応 D350 2m/個	個	71, 400. 00	64, 200. 00	64, 200. 00	64, 200. 00	64, 200. 00				
	函渠型側溝(卵型)	排水性対応 D450 2m/個	個	107, 000. 00	97, 100. 00	97, 100. 00	97, 100. 00	97, 100. 00				
	歩道用平板ブロック	300×300×60 カラー	枚		710.00			710.00				
	誘導(点字)プロック	300×300×30 平板	個		600			600				
	誘導(点字)ブロック	300×300×60 平板	個		620			620				

種 別	木材											中部地方整備	請局 単位	: 円
	品目	規	格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	正角材(内地材)	杉 3 m×7.5 c m×7.	5 cm 特1等	m 3	75, 000	84, 000	84, 000	84, 000	84, 000					
	正角材(内地材)	杉 3 m×7. 5 c m×7.	5 c m 1 等	m 3	75, 000	84, 000	84, 000	84, 000	84, 000					
	正角材(内地材)	杉 4 m×7. 5 c m×7.	5 cm 特1等	m 3	75, 000	84, 000	84, 000	84, 000	84, 000					
	正角材(内地材)	杉 4 m×7. 5 c m×7.	5 c m 1等	m 3	75, 000	84, 000	84, 000	84, 000	84, 000					
	松角材	4 m×1 2 c m×1 2 c m	1等	m 3	87, 000	88, 000	88, 000	88, 000	88, 000					

種別	塗料										中部地方整備	請局 単位	: 円
	品 目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	塗料 (超大口単価)	ジンクリッチペイント 無機厚膜	k g	1,750	1, 750	1, 750	1,750	1, 750					
	塗料 (超大口単価)	エポキシ樹脂塗料 下塗	k g	1,500	1, 500	1, 500	1, 500	1, 500					
	塗料 (超大口単価)	フッ素樹脂塗料 淡彩 中塗用	k g	1,740	1,740	1,740	1,740	1,740					
	塗料 (超大口単価)	フッ素樹脂塗料 淡彩 上塗用	kg	5, 780	5, 780	5, 780	5, 780	5, 780					
	塗料用シンナー (超大口単価)	ジンクリッチプライマー用シンナー 無機	L	690	690	690	690	690					
	塗料用シンナー (超大口単価)	エポキシ樹脂塗料用シンナー	L	650	650	650	650	650					
	塗料用シンナー (超大口単価)	フッ素樹脂塗料用シンナー 淡彩 中塗用	L	650	650	650	650	650					
	塗料用シンナー (超大口単価)	フッ素樹脂塗料用シンナー 淡彩 上塗用	L	745	745	745	745	745					

種 別	河川・砂防・ダム用材										中部地方整備	請局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	松苗	黒松2年生	本										
	キャレリー	1. 0 t 用	台	149, 000	149, 000	149, 000	149,000	149, 000					
	キャレリー	2.0 t用	台	205, 000	205, 000	205, 000	205, 000	205, 000					
	キャレリー	3.0 t用	台	257, 000	257, 000	257, 000	257,000	257, 000					
	キャレリー	5. 0 t用	台	355, 000	355, 000	355, 000	355, 000	355, 000					

種 別	道路・舗装用材								 	 中部地方整	備局 単位	::円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24			備	考
	用地境界鋲	アルミ 60×120 鉄製ビス含む	個	2, 120	2, 120	2, 120	2, 120	2, 120				
	距離標杭(河川用)(タイル3面含まず)	200×200×1000	本	20, 000	19, 000	19, 000	19, 000	19, 000				
	距離標杭(河川用)(タイル3面含む)	200*200*1000 (タイル150*70*2+建)	本	32, 600	31, 600	31, 600	31, 600	31, 600				
	量水標	AKK式 垂直用 130×900×0.8	枚	2, 800	2, 800	2,800	2,800	2,800				
	量水標 中継板	AKK式 垂直用 130×100×0.8	枚	1,050	1, 050	1,050	1,050	1,050				
	量水標 スコッチ数字	АККЯ	枚	260	260	260	260	260				
	プレキャスト置式Gr連続基礎(重ね合わせタイプ)	S型 (650×600)	個	75, 000	75, 000	75, 000	75, 000	75, 000				
	プレキャスト置式Gr連続基礎(重ね合わせタイプ)	A型 (630×450)	個	57, 700	57, 700	57, 700	57, 700	57, 700				
	プレキャスト置式Gr連続基礎(重ね合わせタイプ)	B型(400×450)	個	36, 900	36, 900	36, 900	36, 900	36, 900				
	プレキャスト置式Gr連続基礎(重ね合わせタイプ)	B型 端部A	個	34, 400	34, 400	34, 400	34, 400	34, 400				
	プレキャスト置式Gr連続基礎(重ね合わせタイプ)	B型 端部B	個	35, 000	35, 000	35, 000	35, 000	35, 000				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=600 600×450×1000	個	21, 200	21, 200	21, 200	21, 200	21, 200				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=600 600×450×2000	個	51, 300	51, 300	51, 300	51, 300	51, 300				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=600 600×450×3000	個	75, 500	75, 500	75, 500	75, 500	75, 500				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=500 500×450×1000	個	19, 300	19, 300	19, 300	19, 300	19, 300				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=500 500×450×2000	個	39, 700	39, 700	39, 700	39, 700	39, 700				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=500 500×450×3000	個	61, 200	61, 200	61, 200	61, 200	61, 200				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=400 400×450×1000	個	13, 900	13, 900	13, 900	13, 900	13, 900				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=400 400×450×2000	個	31, 400	31, 400	31, 400	31, 400	31, 400				
	プレキャスト置式Gr連続基礎(連結タイプ)	B=400 400×450×3000	個	46, 900	46, 900	46, 900	46, 900	46, 900				
	連結プレート	プレキャスト置式Gr連続基礎 連結タイプ用	個	5,000	5, 000	5,000	5, 000	5, 000				
	境界鋲	120×40×10 2本足付き	枚	1,760	1,760	1, 760	1,760	1, 760				
	瀝青ゴム系接着剤		L	910.00	910.00	910.00	910.00	910.00				
	道路境界杭	国土交通省型 120×120	本		3, 400. 00			3, 400. 00				
	溶接ワイヤー	JIS Z 3351	kg	570	570	570	570	570				

種 別	道路・舗装用材										中部地方整体	備局 単位	.:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	フラックス	JIS Z 3352	kg										
	充填材		kg				770	770					
	裏当材	サブマージ用	枚										
					-								
												_	
	1												

種 別	橋梁・トンネル用材									中部地方整備	請局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重 2 4			備	考
		RM8-25				12, 000						

種 別	造園・緑化用材										中部地方整備	請局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	野芝	半土付き	m 2		620.00			620.00					
	高麗芝		m 2		620.00			620.00					
	芝串	100本束	束		260.00			260.00					
	杉支柱丸太(防腐加工)	長0.6m 末口6cm	本		310.00			310.00					
	杉支柱丸太(防腐加工)	長0.9m 末口6cm	本		410.00			410.00					
	杉支柱丸太(防腐加工)	長1. 2m 末口6cm	本		570.00			570.00					
	杉支柱丸太(防腐加工)	長1.5m 末口6cm	本		660.00			660.00					
	杉支柱丸太(防腐加工)	長1.8m 末口6cm	本		780. 00			780.00					
	杉支柱丸太(防腐加工)	長0.6m 末口7.5cm	本		370.00			370.00					
	杉支柱丸太(防腐加工)	長0.75m 末口7.5cm	本		460.00			460.00					
	杉支柱丸太(防腐加工)	長0.9m 末口7.5cm	本		580. 00			580. 00					
	杉支柱丸太(防腐加工)	長1. 2m 末口7. 5 cm	本		730. 00			730. 00					
	杉支柱丸太(防腐加工)	長1.5m 末口7.5cm	本		840.00			840.00					
	杉支柱丸太(防腐加工)	長1.8m 末口7.5cm	本		970.00			970.00					
	杉支柱丸太(防腐加工)	長2. 1m 末口7. 5cm	本		1, 240. 00			1, 240. 00					
	杉支柱丸太(防腐加工)	長0.9m 末口9cm	本		810.00			810.00					
	杉支柱丸太(防腐加工)	長1. 2 m 末口9 c m	本		1,040.00			1, 040. 00					
	杉支柱丸太(防腐加工)	長1.5m 末口9cm	本		1, 270. 00			1, 270. 00					
	杉支柱丸太(防腐加工)	長1.8m 末口9cm	本		1, 480. 00			1, 480. 00					
	杉支柱丸太(防腐加工)	長2. 1m 末口9cm	本		1, 790. 00			1, 790. 00					
	杉支柱丸太(防腐加工)	長4.0m 末口3cm(梢丸太)	本		1, 400. 00			1, 400. 00					
	杉支柱丸太(防腐加工)	長4.0m 末口6cm	本		2, 550. 00			2, 550. 00					
	杉支柱丸太(防腐加工)	長4.0m 元口6cm(梢丸太)	本		1, 400. 00			1, 400. 00					

種 別	中部独自河川材料								 	 中部地方整	·備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24			備	考
	プレキャスト縦帯	A型 18N以上 700×300 L=5.0m	本	100,000	95, 800	95, 800	95, 800	95, 800				
	プレキャスト縦帯	B型 18N以上 500×200 L=5.0m	本	62, 600	59, 600	59, 600	59, 600	59, 600				
	平型ブロック(護岸用)	平型 18N以上 500×300×150	個	1,580	1,500	1,500	1, 500	1,580				
	車止めD型	コンクリート製 塗装済 300×300×800	個	30, 200	28, 700	28, 700	28, 700	28, 700				
	基礎ブロック(官民境界杭用)	A型 500×500×200	個	6, 700	6, 300	6, 300	6, 300	6, 300				
	基礎ブロック(官民境界杭用)	B型 500×325×200	個	5, 800	5, 500	5, 500	5, 500	5, 500				
	基礎ブロック(官民境界杭用)	C型 500×250×200	個	4, 900	4,600	4, 600	4, 600	4,600				
	プレキャスト法留基礎	A型 18N以上 1000×1000 5.0m (2割勾配用·中空)	個	156, 000	149, 000	149, 000	149, 000	149, 000				
	プレキャスト法留基礎	B型 18N以上 800×800 5.0m (2割勾配用・中空)	個	107, 000	102, 000	102, 000	102,000	102, 000				
	プレキャスト法留基礎	C型 18N以上 700×700 5.0m (2割勾配用・中空)	個	93, 800	89, 300	89, 300	89, 300	89, 300				
	プレキャスト法留基礎	D型 18N以上 500×500 5.0m(2割勾配用·中詰不要)	個	100,000	95, 800	95, 800	95, 800	95, 800				
	プレキャスト法枠	縦枠 18N以上 300×300	m	12, 700	12, 100	12, 100	12, 100	12, 100				
	プレキャスト法枠	横枠 18N以上 300×200	m	20, 900	20, 000	20, 000	20, 000	20, 000				
	プレキャスト法枠	すべり止め 18N以上 300×300	m	9, 470	9, 020	9, 020	9, 020	9, 020				
	残存型枠	プロテロックピアス 600×1200	m 2		5, 138			5, 138				
	残存型枠	プロテロックピアス用取付部材	m 2		1, 140			1, 140			砂防用	
	残存化粧型枠	プロテロックメーク割石40 600×1200(着色なし)	m 2		11, 590			11, 590				
	残存化粧型枠	プ゚ロテロックメーク I I 600×1200 (着色なし)	m 2		10, 230			10, 230				
	残存化粧型枠	プロテロックメーク (メーク I I) 用取付部材	m 2		1, 420			1, 420			砂防用	
	残存型枠	プロテロックセプスワンター 600×1200 (着色なし)	m 2		5, 416			5, 416				
	官民境界杭(河川)	φ 1 5 0 × 1 0 0 0	本	15, 600	14, 900	14, 900	14, 900	14, 900				
	タイバー	海岸用 D16×600	本	160.00	160.00	160. 00	160.00	160.00				
	スリップバー	海岸用 φ16×600 (キャップ付)	本	260.00	260.00	260.00	260.00	260.00				
	スリップバー	海岸用 φ19×600 (キャップ付)	本	350. 00	350.00	350. 00	350.00	350.00				
	発芽補助剤	安定剤	kg	1,890	1,890	1,890	1,890	1,890				

種 別	中部独自河川材料										中部地方整備	常局 単位	1:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	発芽補助剤	保水剤	kg	2, 860	2, 860	2, 860	2, 860	2, 860					
	シャックル(根固ブロック用)	径16 SR235以上	個	950.00	950.00	950.00	950.00	950.00					
	シャックル(根固ブロック用)	径19 SR235以上	個	1, 330. 00	1, 330. 00	1, 330. 00	1, 330. 00	1, 330. 00					

種別	中部独自道路材料1										中部地方整体	備局 単	立:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24				備	考
	歩車道境界ブロック	両面 A 150/190×200×600	個	1, 260. 00	1, 130. 00	1, 470. 00	1, 140. 00	1, 120. 00					
	歩車道境界ブロック	両面 B 180/230×250×600	個	1, 860. 00	1, 560. 00	2, 190. 00	1, 530. 00	1, 500. 00					
	歩車道境界ブロック	両面 C 180/240×300×600	個	2, 320. 00	1, 910. 00	2, 760. 00	1, 880. 00	1, 840. 00					
	横断歩道乗入用境界ブロック	180×70×600	個	1, 530. 00	1, 680. 00		1, 220. 00	1, 270. 00					
	歩道乗入用境界ブロック	30/205×70/100×600	個	1, 530. 00	1, 680. 00	880. 00	1, 220. 00	1, 430. 00					
	車道乗入用境界ブロック	180/190×100×600	個	1, 530. 00	1, 680. 00		1, 280. 00	1, 400. 00					
	外面の二次素地調整	ブラスト処理	m 2	1,720	1,720	1,720	1,720	1,720					
	内面及び箱桁上フランジ上面の二次素地調整	動力工具処理	m 2	949	949	949	949	949					
	接触面の二次素地調整	接触面プラスト処理	m 2	2, 750	2, 750	2, 750	2, 750	2, 750					
	キングポスト	T-7123-B	本	27, 400	27, 400	27, 400	27, 400	27, 400					
	キングポスト	T-7123-C	本	31, 300	31, 300	31, 300	31, 300	31, 300					
	キングポスト	T-7123-D	本	38, 000	38, 000	38, 000	38, 000	38, 000					
	キングポスト	T-7123-E	本	42, 300	42, 300	42, 300	42, 300	42, 300					
	キングポスト	M-7123-B	本	56, 000	56, 000	56, 000	56, 000	56, 000					
	キングポスト	M-7123-C	本	58, 400	58, 400	58, 400	58, 400	58, 400					
	キングポスト	M-7123-D	本	67, 700	67, 700	67, 700	67, 700	67, 700					
	キングポスト	M-7123-E	本	70, 700	70, 700	70, 700	70, 700	70, 700					
	クサリ	φ 8 5 7 × 2 9 S S 4 0 0	m	1, 560. 00	1, 560. 00	1, 560. 00	1, 560. 00	1, 560. 00					
	危険標示板	両面反射 t=2 700×250シャックル2個付	枚	27, 300	27, 300	27, 300	27, 300	27, 300					
	デリネーター	Co用 両面 φ100 支柱1150 メッキ	本	4, 560. 00	4, 560. 00	4, 560. 00	4, 560. 00	4, 560. 00					
	デリネーター	C o用 片面 φ100 支柱1150 メッキ	本	3, 920. 00	3, 920. 00	3, 920. 00	3, 920. 00	3, 920. 00					
	落石防止柵 CO中 メッキ ステー	3本掛ケーブル(金網強力メッキ)	m	3, 910. 00	3, 910. 00	3, 910. 00	3, 910. 00	3, 910. 00					
	落石防止柵 CO中 メッキ ステー	4 本掛ケーブル(金網強力メッキ)	m	5, 020. 00	5, 020. 00	5, 020. 00	5, 020. 00	5, 020. 00					
	落石防止柵 CO中 メッキ ステー	5 本掛ケーブル(金網強力メッキ)	m	6, 130. 00	6, 130. 00	6, 130. 00	6, 130. 00	6, 130. 00					
	落石防止柵 CO中 メッキ ステー	6 本掛ケーブル(金網強力メッキ)	m	7, 610. 00	7, 610. 00	7, 610. 00	7, 610. 00	7, 610. 00					

種 別	中部独自道路材料 1										中部地方整	備局 単位	.:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	落石防止柵 端末排土口 CO中メッキ	5本掛 ネット ロープ 支柱	箇所	410, 000	410, 000	410,000	410,000	410, 000					
	落石防止柵 端末排土口 CO中メッキ	6本掛 ネット ロープ 支柱	箇所	513, 000	513, 000	513, 000	513,000	513, 000					
	落石防止柵 端末排土口 CO中メッキ	8本掛 ネット ロープ 支柱	箇所	692, 000	692, 000	692, 000	692,000	692, 000					
	落石防止柵 端末排土口 CO中メッキ	9本掛 ネット ロープ 支柱	箇所	794, 000	794, 000	794, 000	794, 000	794, 000					
	遮光フェンス	Gr60.5×3.2×930 P57 メッキ間4	m	7, 130. 00	7, 130. 00	7, 130. 00	7, 130. 00	7, 130. 00					
	遮光フェンス	60.5×3.2×1150 P6 メッキ間4	m	8, 650. 00	8, 650. 00	8, 650. 00	8, 650. 00	8, 650. 00					
	遮光フェンス	89.2×4.2×1650 P1 メッキ間4	m	10, 700	10, 700	10, 700	10, 700	10, 700					
	防護柵遮光フェンス用等基礎ブロック	3 0 0 × 3 0 0 × 4 0 0	個	2, 040. 00	1, 710. 00	2, 070. 00	1, 710. 00	1, 710. 00					
	防護柵遮光フェンス用等基礎ブロック	3 0 0 × 3 0 0 × 4 5 0	個	2, 280. 00	1, 840. 00	2, 220. 00	1, 840. 00	1, 840. 00					
	防護柵遮光フェンス用等基礎ブロック	4 0 0 × 4 0 0 × 4 0 0 φ 7 5 ~	個	3, 590. 00	3, 320. 00	4, 000. 00	3, 320. 00	3, 320. 00					
	防護柵遮光フェンス用等基礎ブロック	4 0 0 × 4 0 0 × 4 5 0	個	4, 050. 00	3, 810. 00	4, 600. 00	3, 810. 00	3, 810. 00					
	防護柵遮光フェンス用等基礎ブロック	5 0 0 × 5 0 0 × 4 0 0 φ 1 5 0	個	5, 610	5, 670	6, 820	5, 670	5, 670					
	縞鋼鈑桝蓋 (メッキ品)	FP1 40×40 17.5kg	枚	15, 700	15, 700	15, 700	15, 700	15, 700					
	縞鋼鈑桝蓋(メッキ品)	FP1 50×50 24.1kg	枚	21, 000	21, 000	21, 000	21, 000	21, 000					
	縞鋼鈑桝蓋 (メッキ品)	FP1 60×60 31.6kg	枚	27, 700	27, 700	27, 700	27, 700	27, 700					
	縞鋼鈑桝蓋 (メッキ品)	FP1 70×70 40.1kg	枚	34, 500	34, 500	34, 500	34, 500	34, 500					
	縞鋼鈑桝蓋(メッキ品)	FP1 80×80 49.7kg	枚	42, 700	42, 700	42, 700	42, 700	42, 700					
	縞鋼鈑桝蓋(メッキ品)	FP1 90×90 60.2kg	枚	52, 500	52, 500	52, 500	52, 500	52, 500					
	縞鋼鈑桝蓋(メッキ品)	FP2 100×100 89.3kg	組	77, 200	77, 200	77, 200	77, 200	77, 200					
	編鋼鈑桝蓋(メッキ品) 	FP2 110×110 103kg	組	89, 200	89, 200	89, 200	89, 200	89, 200					
	編鋼鈑桝蓋 (メッキ品)	FP2 120×120 118kg	組	102, 000	102, 000	102, 000	102,000	102, 000					
	編鋼鈑桝蓋 (メッキ品)	FP2 130×130 135kg	組	117, 000	117, 000	117, 000	117,000	117, 000					
	編鋼鈑桝蓋 (メッキ品)	FP2 140×140 151kg	組	130, 000	130, 000	130, 000	130,000	130, 000					
	編鋼鈑桝蓋 (メッキ品)	FP2 150×150 169kg	組	146, 000	146, 000	146, 000	146,000	146, 000					
	編鋼鈑桝蓋(メッキ品)	FP2 160×160 188kg	組	162, 000	162, 000	162, 000	162,000	162, 000					

種 別	中部独自道路材料 1										中部地方整備	請局 単位	: 円
	品 目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	縞鋼鈑桝蓋(メッキ品)	FP2 170×170 208kg	組	180,000	180, 000	180, 000	180,000	180, 000					
	縞鋼鈑桝蓋(メッキ品)	FP2 180×180 229kg	組	197, 000	197, 000	197, 000	197,000	197, 000					
	集水桝蓋	T-20用 400×400 (衝擊係数 2方向)	枚	36, 200. 00	36, 200. 00	36, 200. 00	36, 200. 00	36, 200. 00					
	集水桝蓋	T-14用 400×400 (衝撃係数 2方向)	枚	33, 600. 00	33, 600. 00	33, 600. 00	33, 600. 00	33, 600. 00					
	集水桝蓋	T-2用 400×400 (衝撃係数 2方向)	枚	25, 900. 00	25, 900. 00	25, 900. 00	25, 900. 00	25, 900. 00					
	集水桝蓋	T-2用 細目 400×400 (衝撃係数 2方向) 枚	30, 600. 00	30, 600. 00	30, 600. 00	30, 600. 00	30, 600. 00					
	集水桝蓋	T-20用 500×500 (衝擊係数 2方向)	枚	49, 100. 00	49, 100. 00	49, 100. 00	49, 100. 00	49, 100. 00					
	集水桝蓋	T-14用 500×500 (衝撃係数 2方向)	枚	48, 500. 00	48, 500. 00	48, 500. 00	48, 500. 00	48, 500. 00					
	集水桝蓋	T-2用 500×500 (衝撃係数 2方向)	枚	34, 300. 00	34, 300. 00	34, 300. 00	34, 300. 00	34, 300. 00					
	集水桝蓋	T-2用 細目 500×500 (衝撃係数 2方向) 枚	41, 400. 00	41, 400. 00	41, 400. 00	41, 400. 00	41, 400. 00					
	集水桝蓋	T-20用 600×600 (衝撃係数 2方向)	枚	64, 300. 00	64, 300. 00	64, 300. 00	64, 300. 00	64, 300. 00					
	集水桝蓋	T-14用 600×600 (衝撃係数 2方向)	枚	59, 800. 00	59, 800. 00	59, 800. 00	59, 800. 00	59, 800. 00					
	集水桝蓋	T-2用 600×600 (衝撃係数 2方向)	枚	41, 000. 00	41, 000. 00	41, 000. 00	41, 000. 00	41, 000. 00					
	集水桝蓋	T-2用 細目 600×600 (衝撃係数 2方向) 枚	51, 300. 00	51, 300. 00	51, 300. 00	51, 300. 00	51, 300. 00					
	集水桝蓋	T-20用 700×700 (衝撃係数 2方向)	枚	92, 000. 00	92, 000. 00	92, 000. 00	92, 000. 00	92, 000. 00					
	集水桝蓋	T-14用 700×700 (衝撃係数 2方向)	枚	86, 700. 00	86, 700. 00	86, 700. 00	86, 700. 00	86, 700. 00					
	集水桝蓋	T-2用 700×700 (衝撃係数 2方向)	枚	55, 600. 00	55, 600. 00	55, 600. 00	55, 600. 00	55, 600. 00					
	集水桝蓋	T-2用 細目 700×700 (衝撃係数 2方向) 枚	72, 500. 00	72, 500. 00	72, 500. 00	72, 500. 00	72, 500. 00					
	集水桝蓋	T-20用 800×800 (衝撃係数 2方向)	枚	110, 000. 00	110, 000. 00	110, 000. 00	110, 000. 00	110, 000. 00					
	集水桝蓋	T-14用 800×800 (衝撃係数 2方向)	枚	105, 000. 00	105, 000. 00	105, 000. 00	105, 000. 00	105, 000. 00					
	集水桝蓋	T-2用 800×800 (衝撃係数 2方向)	枚	67, 700. 00	67, 700. 00	67, 700. 00	67, 700. 00	67, 700. 00					
	集水桝蓋	T-2用 細目 800×800 (衝撃係数 2方向) 枚	86, 600. 00	86, 600. 00	86, 600. 00	86, 600. 00	86, 600. 00					
	集水桝蓋	T-20用 900×900 (衝撃係数 2方向)	枚	125, 000. 00	125, 000. 00	125, 000. 00	125, 000. 00	125, 000. 00					
	集水桝蓋	T −14用 900×900 (衝撃係数 2方向)	枚	119, 000. 00	119, 000. 00	119, 000. 00	119, 000. 00	119, 000. 00					
	集水桝蓋	T −2用 900×900 (衝撃係数 2方向)	枚	79, 600. 00	79, 600. 00	79, 600. 00	79, 600. 00	79, 600. 00					

種 別	中部独自道路材料 1											中部地方整備	局 単位	: 円
	品目	規	格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	集水桝蓋	T-2用 細目 900×900	(衝撃係数 2方向)	枚	146, 000. 00	146, 000. 00	146, 000. 00	146, 000. 00	146, 000. 00					
	集水桝蓋	T −20用 1000×1000 (衝	撃係数 2方向)	枚	162, 000. 00	162, 000. 00	162, 000. 00	162, 000. 00	162, 000. 00					
	集水桝蓋	T −14用 1000×1000 (衝	撃係数 2方向)	枚	162, 000. 00	162, 000. 00	162, 000. 00	162, 000. 00	162, 000. 00					
	集水桝蓋	T −2用 1000×1000 (衝	擎係数 2方向)	枚	109, 000. 00	109, 000. 00	109, 000. 00	109, 000. 00	109, 000. 00					
	集水桝蓋	T-2用 細目 1000×100	00(衝撃係数 2方向)	枚	169, 000. 00	169, 000. 00	169, 000. 00	169, 000. 00	169, 000. 00					
	集水桝蓋	T −20用 1200×1200 (衝	撃係数 2方向)	枚	232, 000. 00	232, 000. 00	232, 000. 00	232, 000. 00	232, 000. 00					
	集水桝蓋	T −14用 1200×1200(衝	撃係数 2方向)	枚	215, 000. 00	215, 000. 00	215, 000. 00	215, 000. 00	215, 000. 00					
	集水桝蓋	T −2用 1200×1200 (衝	擎係数 2方向)	枚	156, 000. 00	156, 000. 00	156, 000. 00	156, 000. 00	156, 000. 00					
	集水桝蓋	T-2用 細目 1200×120	00 (衝撃係数 2方向)	枚	235, 000. 00	235, 000. 00	235, 000. 00	235, 000. 00	235, 000. 00					
	集水桝蓋	T −20用 1400×1400 (衝	撃係数 2方向)	枚	278, 000. 00	278, 000. 00	278, 000. 00	278, 000. 00	278, 000. 00					
	集水桝蓋	T −14用 1400×1400 (衝	撃係数 2方向)	枚	255, 000. 00	255, 000. 00	255, 000. 00	255, 000. 00	255, 000. 00					
	集水桝蓋	T −2用 1400×1400(衝動	擎係数 2方向)	枚	200, 000. 00	200, 000. 00	200, 000. 00	200, 000. 00	200, 000. 00					
	集水桝蓋	T-2用 細目 1400×140	00 (衝撃係数 2方向)	枚	332, 000. 00	332, 000. 00	332, 000. 00	332, 000. 00	332, 000. 00					
	集水桝蓋	T −20用 1600×1600 (衝	撃係数 2方向)	枚	353, 000. 00	353, 000. 00	353, 000. 00	353, 000. 00	353, 000. 00					
	集水桝蓋	T −14用 1600×1600 (衝	撃係数 2方向)	枚	353, 000. 00	353, 000. 00	353, 000. 00	353, 000. 00	353, 000. 00					
	集水桝蓋	T−2用 1600×1600(衝動	撃係数 2方向)	枚	253, 000. 00	253, 000. 00	253, 000. 00	253, 000. 00	253, 000. 00					
	集水桝蓋	T-2用 細目 1600×160	00 (衝撃係数 2方向)	枚	452, 000. 00	452, 000. 00	452, 000. 00	452, 000. 00	452, 000. 00					
	集水桝蓋	T −25用 400×400(衝撃	係数 2方向)	枚	38, 400	38, 400	38, 400	38, 400	38, 400					
	集水桝蓋	T −25用 500×500 (衝撃	係数 2方向)	枚	63, 200	63, 200	63, 200	63, 200	63, 200					
	集水桝蓋	T −25用 600×600 (衝撃	係数 2方向)	枚	77, 400	77, 400	77, 400	77, 400	77, 400					
	集水桝蓋	T −25用 700×700(衝撃	係数 2方向)	枚	92, 000	92, 000	92, 000	92, 000	92, 000					
	集水桝蓋	T −25用 800×800(衝撃	係数 2方向)	枚	119, 000	119, 000	119, 000	119,000	119, 000					
	集水桝蓋	T −25用 900×900(衝撃	係数 2方向)	枚	136, 000	136, 000	136, 000	136,000	136, 000					
	集水桝蓋	T −25用 1000×1000 (衝	撃係数 2方向)	枚	177, 000	177, 000	177, 000	177,000	177, 000					
	集水桝蓋	T −25用 1200×1200(衝	撃係数 2方向)	枚	239, 000	239, 000	239, 000	239,000	239, 000					

種 別	中部独自道路材料 1												中部地方整体	備局 単位	: 円
	品目		規	格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	集水桝蓋	T-25用 1	1400×1400 (衝撃係数 2方向)	枚	335, 000	335, 000	335, 000	335,000	335, 000					
	集水桝蓋	T-25用 1	1600×1600 (衝撃係数 2方向)	枚	393, 000	393, 000	393, 000	393,000	393, 000					
	集水桝蓋	T −2用 40	00×400(衝雪	· (係数 1方向)	枚	25, 900. 00	25, 900. 00	25, 900. 00	25, 900. 00	25, 900. 00					
	集水桝蓋	T-2用 細	目 400×40)(衝撃係数 1方向)	枚	30, 600. 00	30, 600. 00	30, 600. 00	30, 600. 00	30, 600. 00					
	集水桝蓋	T-20用 4	400×400(衝	撃係数 1方向)	枚	28, 100. 00	28, 100. 00	28, 100. 00	28, 100. 00	28, 100. 00					
	集水桝蓋	T-14用 4	400×400(衝	撃係数 1方向)	枚	26, 100. 00	26, 100. 00	26, 100. 00	26, 100. 00	26, 100. 00					
	集水桝蓋	T-2用 50	00×500(衝雪	條係数 1方向)	枚	29, 100. 00	29, 100. 00	29, 100. 00	29, 100. 00	29, 100. 00					
	集水桝蓋	T-2用 細	目 500×50)(衝撃係数 1方向)	枚	36, 300. 00	36, 300. 00	36, 300. 00	36, 300. 00	36, 300. 00					
	集水桝蓋	T-20用 5	500×500(衝	擊係数 1方向)	枚	34, 000. 00	34, 000. 00	34, 000. 00	34, 000. 00	34, 000. 00					
	集水桝蓋	T-14用 5	500×500(衝	擊係数 1方向)	枚	31, 900. 00	31, 900. 00	31, 900. 00	31, 900. 00	31, 900. 00					
	集水桝蓋	T-20用 6	600×600(衝	擊係数 1方向)	枚	43, 500. 00	43, 500. 00	43, 500. 00	43, 500. 00	43, 500. 00					
	集水桝蓋	T-14用 6	600×600(衝	擊係数 1方向)	枚	41, 500. 00	41, 500. 00	41, 500. 00	41, 500. 00	41, 500. 00					
	集水桝蓋	T-2用 60	00×600(衝雪	條係数 1方向)	枚	33, 900. 00	33, 900. 00	33, 900. 00	33, 900. 00	33, 900. 00					
	集水桝蓋	T-2用 細	目 600×60) (衝撃係数 1方向)	枚	38, 300. 00	38, 300. 00	38, 300. 00	38, 300. 00	38, 300. 00					
	集水桝蓋	T-20用 7	700×700(衝	擊係数 1方向)	枚	59, 200. 00	59, 200. 00	59, 200. 00	59, 200. 00	59, 200. 00					
	集水桝蓋	T-14用 7	700×700(衝	撃係数 1方向)	枚	53, 800. 00	53, 800. 00	53, 800. 00	53, 800. 00	53, 800. 00					
	集水桝蓋	T −2用 70	00×700(衝雪	條係数 1方向)	枚	41, 000. 00	41, 000. 00	41, 000. 00	41, 000. 00	41, 000. 00					
	集水桝蓋	T-2用 細	∄目 700×70) (衝撃係数 1方向)	枚	48, 800. 00	48, 800. 00	48, 800. 00	48, 800. 00	48, 800. 00					
	集水桝蓋	T-20用 8	800×800(衝	擊係数 1方向)	枚	79, 400. 00	79, 400. 00	79, 400. 00	79, 400. 00	79, 400. 00					
	集水桝蓋	T −14用 8	800×800(衝	撃係数 1方向)	枚	62, 400. 00	62, 400. 00	62, 400. 00	62, 400. 00	62, 400. 00					
	集水桝蓋	T −2用 80	00×800(衝雪	络数 1方向)	枚	47, 000. 00	47, 000. 00	47, 000. 00	47, 000. 00	47, 000. 00					
	集水桝蓋	T-2用 細	目 800×80) (衝撃係数 1方向)	枚	58, 800. 00	58, 800. 00	58, 800. 00	58, 800. 00	58, 800. 00					
	集水桝蓋	T-20用 9	900×900(衝	擊係数 1方向)	枚	92, 600. 00	92, 600. 00	92, 600. 00	92, 600. 00	92, 600. 00					
	集水桝蓋	T-14用 9	900×900(衝	撃係数 1方向)	枚	83, 000. 00	83, 000. 00	83, 000. 00	83, 000. 00	83, 000. 00					
	集水桝蓋	T −2用 90	00×900(衝雪	條係数 1方向)	枚	63, 800. 00	63, 800. 00	63, 800. 00	63, 800. 00	63, 800. 00					

種 別	中部独自道路材料1										中部地方整備	f局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24				備	考
	集水桝蓋	T-2用 細目 900×900 (衝撃係数 1方向)	枚	71, 300. 00	71, 300. 00	71, 300. 00	71, 300. 00	71, 300. 00					
	集水桝蓋	T −20用 1000×1000 (衝撃係数 1方向)	枚	119, 000. 00	119, 000. 00	119, 000. 00	119, 000. 00	119, 000. 00					
	集水桝蓋	T-14用 1000×1000 (衝撃係数 1方向)	枚	114, 000. 00	114, 000. 00	114, 000. 00	114, 000. 00	114, 000. 00					
	集水桝蓋	T −2用 1000×1000 (衝撃係数 1方向)	枚	82, 000. 00	82, 000. 00	82, 000. 00	82, 000. 00	82, 000. 00					
	集水桝蓋	T-2用 細目 1000×1000 (衝撃係数 1方向)	枚	94, 900. 00	94, 900. 00	94, 900. 00	94, 900. 00	94, 900. 00					
	集水桝蓋	T-25用 400×400 (衝擊係数 1方向)	枚	30, 700. 00	30, 700. 00	30, 700. 00	30, 700. 00	30, 700. 00					
	集水桝蓋	T-25用 500×500 (衝撃係数 1方向)	枚	40, 800. 00	40, 800. 00	40, 800. 00	40, 800. 00	40, 800. 00					
	集水桝蓋	T-25用 600×600 (衝撃係数 1方向)	枚	56, 600. 00	56, 600. 00	56, 600. 00	56, 600. 00	56, 600. 00					
	集水桝蓋	T-25用 700×700 (衝撃係数 1方向)	枚	67, 400. 00	67, 400. 00	67, 400. 00	67, 400. 00	67, 400. 00					
	集水桝蓋	T-25用 800×800 (衝擊係数 1方向)	枚	88, 200. 00	88, 200. 00	88, 200. 00	88, 200. 00	88, 200. 00					
	集水桝蓋	T-25用 900×900 (衝擊係数 1方向)	枚	100, 000. 00	100, 000. 00	100, 000. 00	100, 000. 00	100, 000. 00					
	集水桝蓋	T-25用 1000×1000 (衝撃係数 1方向)	枚	123, 000. 00	123, 000. 00	123, 000. 00	123, 000. 00	123, 000. 00					
	コンクリート蓋(自由勾配側溝歩道用)	PC5-B300 参考重量32kg/枚	枚		1, 580	1, 350	1, 580	1, 630					
	コンクリート蓋(自由勾配側溝歩道用)	PC5-B400 参考重量45kg/枚	枚		2, 250	2,050	2, 250	2, 280					
	コンクリート蓋(自由勾配側溝歩道用)	PC5-B500 参考重量59kg/枚	枚		2, 880	2, 910	2, 880	2, 920					
	コンクリート蓋(自由勾配側溝歩道用)	PC5-B600 参考重量76kg/枚	枚		3, 690	5, 290	3, 690	3, 810					
	区画線	自転車マーク 溶融式 (材・工共)	ヶ所	6, 380	6, 540	6, 670	6, 620	6, 340					
	固定金物	径250用	セット	49, 500. 00	49, 500. 00	49, 500. 00	49, 500. 00	49, 500. 00					
	レデューサー	径 2 5 0 mm	個	384, 000. 00	384, 000. 00	384, 000. 00	384, 000. 00	384, 000. 00					
	レデューサー	径350mm	個	496, 000. 00	496, 000. 00	496, 000. 00	496, 000. 00	496, 000. 00					
	ハンドホール	8 0 0 × 1 2 0 0 × 1 0 0 0	個	183, 000. 00	183, 000. 00	183, 000. 00	183, 000. 00	183, 000. 00					
	ハンドホール	8 0 0 × 1 6 0 0 × 1 0 0 0	個	197, 000. 00	197, 000. 00	197, 000. 00	197, 000. 00	197, 000. 00					
	埋設表示鋲	情報ボックス用	個	400.00	400.00	400.00	400.00	400.00					
	埋設表示杭	情報ボックス用	個	410.00	410.00	410.00	410.00	410.00					
	転落防止柵(縦格子)	H=1100 土中用用 ダークプラウン	m	12, 100	12, 100	12, 100	12, 100	12, 100					

種 別	中部独自道路材料 1										中部地方整	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	転落防止柵 (縦格子)	H=1100 コンクリートフ゛ロック用 ダークフ゛ラウン	m	11, 600	11, 600	11,600	11, 600	11,600					
	転落防止柵 (縦格子)	H=1100 コンクリート建込用 ダークプラウン	m	11, 300	11, 300	11, 300	11, 300	11, 300					
	転落防止柵(縦格子) (アンカーボルト含まず)	H=1100 アンカーボ ルト固定ベースプレート用 ダークブラウン	m	13, 200	13, 200	13, 200	13, 200	13, 200					
	転落防止柵(縦格子) (アンカーボルト含まず)	H=1100 アンカーボルト固定側壁用 ダークブラウン 支柱全長1560	m	13, 200	13, 200	13, 200	13, 200	13, 200					
	転落防止柵 (4段ピーム)	H=1100 2.3×950×3000 景観配慮型 土中建込	m	12, 100	12, 100	12, 100	12, 100	12, 100					
	転落防止柵 (4段ピーム)	H=1100 2.3×950×3000 景観配慮型 独立基礎	m	11, 600	11, 600	11, 600	11, 600	11, 600					
	転落防止柵 (4段ピーム)	H=1100 2.3×950×3000 景観配慮型 コンクリート建込	m	11, 400	11, 400	11, 400	11, 400	11, 400					
	橋梁用排水桝	F C 2 5 0	t	1, 520, 000	1, 520, 000	1, 520, 000	1, 520, 000	1, 520, 000					
	弾性シール材 (伸縮継手用)	液状ポリブタジエン (2液混合)	L	1, 300. 00	1, 300. 00	1, 300. 00	1, 300. 00	1, 300. 00					
	異形スタッド (橋梁用)	D16 300NSD400	t	1, 110, 000	1, 110, 000	1, 110, 000	1, 110, 000	1, 110, 000					
	異形スタッド (橋梁用)	D 2 2 3 0 0 N S D 4 0 0	t	828, 000	828, 000	828, 000	828,000	828, 000					
	異形スタッド(橋梁用)	D 2 5 3 0 0 N S D 4 0 0	t	815, 000	815, 000	815, 000	815,000	815, 000					
	排水管取付金具	BN込 塗装・アンカーボルト含まず	t	1, 950, 000	1, 950, 000	1, 950, 000	1, 950, 000	1, 950, 000				対象重量は形鋼	重量とする
	排水管取付金具	二股 BN込 塗装・アンカーボルト含まず	t	1, 960, 000	1,960,000	1, 960, 000	1, 960, 000	1, 960, 000				対象重量は形鋼	重量とする
	止水ゴムパッキング	I-50 クロロプレーンゴム (伸縮継手)	m	15, 200	15, 200	15, 200	15, 200	15, 200					
	止水ゴムパッキング	I-80 クロロプレーンゴム (伸縮継手)	m	16, 800	16, 800	16, 800	16, 800	16, 800					
	止水ゴムパッキング	I-100 クロロプレーンゴム (伸縮維手)	m	21, 600	21, 600	21, 600	21, 600	21, 600					
	止水ゴムパッキング	Ⅰ-200 クロロプレーンゴム (伸縮継手)	m	35, 200	35, 200	35, 200	35, 200	35, 200					
	橋梁用支承箱抜き型枠	径150 (ワインディングシース)	m	1,710	1,710	1,710	1,710	1,710					
	橋梁用支承箱抜き型枠	径175 (ワインディングシース)	m	1, 990	1, 990	1, 990	1, 990	1, 990					
	橋梁用支承箱抜き型枠	径200 (ワインディングシース)	m	2, 260	2, 260	2, 260	2, 260	2, 260					
	橋梁用支承箱抜き型枠	径225 (ワインディングシース)	m	2, 550	2, 550	2, 550	2, 550	2, 550					
	橋梁用支承箱抜き型枠	径250 (ワインディングシース)	m	2, 830	2, 830	2, 830	2, 830	2, 830					
	シャックル	亜鉛メッキ Φ8	個	1, 400. 00	1, 400. 00	1, 400. 00	1, 400. 00	1, 400. 00					
	スラブドレーン	スラブ厚1120~1320	組	67, 800	67, 800	67, 800	67, 800	67, 800	 				

種 別	中部独自道路材料 1									中部地方整備	f局 単位	: 円
	品目	規格	単位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	防水用プライマー		L	688.00	688. 00	688. 00	688.00	688. 00				
	スパイラル鋼管	t = 1 mm亜鉛メッキ φ 5 0 0	m	6, 320. 00	6, 320. 00	6, 320. 00	6, 320. 00	6, 320. 00				
	ビット	径 2 5 0 mm用	個	679, 000	679, 000	679, 000	679, 000	679, 000				
	ビット	径350mm用	個	1, 160, 000	1, 160, 000	1, 160, 000	1, 160, 000	1, 160, 000				
	ビット	径450mm用	個	1,610,000	1, 610, 000	1, 610, 000	1, 610, 000	1, 610, 000				
	ビット	径500mm用	個	2, 080, 000	2, 080, 000	2, 080, 000	2, 080, 000	2, 080, 000				
	ビット	径550mm用	個	2, 500, 000	2, 500, 000	2, 500, 000	2, 500, 000	2, 500, 000				
	ロッド (3 m/本)	径250mm用	本	363, 000	363, 000	363, 000	363,000	363, 000				
	ロッド (3 m/本)	径350mm用	本	363, 000	363, 000	363, 000	363,000	363, 000				
	ロッド (3 m/本)	径450mm用	本	363, 000	363, 000	363, 000	363,000	363, 000				
	ロッド (3 m/本)	径500mm用	本	363, 000	363, 000	363, 000	363,000	363, 000				
	ロッド (3 m/本)	径550mm用	本	363, 000	363, 000	363, 000	363,000	363, 000				
	ロッドカバー	径250mm用	個	582, 000	582, 000	582, 000	582,000	582, 000				
	ロッドカバー	径350mm用	個	684, 000	684, 000	684, 000	684,000	684, 000				
	ロッドカバー	径450mm用	個	989, 000	989, 000	989, 000	989, 000	989, 000				
	ロッドカバー	径500mm用	個	1, 080, 000	1, 080, 000	1, 080, 000	1, 080, 000	1, 080, 000				
	ロッドカバー	径550mm用	個	1, 230, 000	1, 230, 000	1, 230, 000	1, 230, 000	1, 230, 000				
	ハンマサブソケット	径 2 5 0 mm用	個	242, 000	242, 000	242, 000	242,000	242, 000				
	ハンマサブソケット	径350mm用	個	281, 000	281, 000	281, 000	281,000	281,000				
	ハンマサブソケット	径450mm用	個	417, 000	417, 000	417, 000	417,000	417, 000				
	エアスイベル	径250mm用	個	984, 000	984, 000	984, 000	984, 000	984, 000				
	エアスイベル	径350mm用	個	984, 000	984, 000	984, 000	984,000	984, 000				
	エアスイベル	径 4 5 0 mm用	個	984, 000	984, 000	984, 000	984, 000	984, 000				
	エアスイベル	径500mm用	個	984, 000	984, 000	984, 000	984, 000	984, 000				
	エアスイベル	径550mm用	個	984, 000	984, 000	984, 000	984, 000	984, 000				

種 別	中部独自道路材料 1											_	中部地方整備	常局 単位	: 円
	品目		規	格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重 2 4				備	考
	平板載荷試験	多サイクル方式	100KN以	下 標準部	箇所	389, 000. 00	389, 000. 00	389, 000. 00	389, 000. 00	389, 000. 00					
	平板載荷試験	多サイクル方式	100KN以	下 仮締切内部	箇所	439, 000. 00	439, 000. 00	439, 000. 00	439, 000. 00	439, 000. 00					
	平板載荷試験	単サイクル方式	50KN以下	標準部	箇所	287, 000	287, 000	287, 000	287, 000	287, 000					
	平板載荷試験	単サイクル方式	50KN以下	仮締切内部	箇所	337, 000	337, 000	337, 000	337, 000	337, 000					
	平板載荷試験	単サイクル方式	100KN以	下 標準部	箇所	337, 000	337, 000	337, 000	337, 000	337, 000					
	平板載荷試験	単サイクル方式	100KN以	下 仮締切内部	箇所	387, 000	387, 000	387, 000	387,000	387, 000					
	I	1			<u> </u>						I	1	 		

種 別	その他土木資材											中部地方整備	請局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24					備	考
	産業用火薬	大発破用(小口)	kg	2, 340	2, 340	2, 350	2, 320	2, 350						
	樹脂	樹脂モルタル用	k g	3, 440. 00	3, 440. 00	3, 440. 00	3, 440. 00	3, 440. 00						
	接着材	PC桁用 エポキシ樹脂系	kg	3, 200. 00	3, 200. 00	3, 200. 00	3, 200. 00	3, 200. 00						
	シール材	エポキシ	k g	2, 480	2, 480	2, 480	2, 480	2, 480						
	注入材	エポキシ	k g	3, 200	3, 200	3, 200	3, 200	3, 200						
	ウォータジェットパイプ取付金具		個	270.00	270.00	270.00	270.00	270.00						
-		•								•	•			

種 別	建築その他									 中部地方整備	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	防水シート	ゴム化アスファルト 厚3.2				1,890.00						
	保護ボード	アスファルト系 厚10	m 2	1, 500. 00	1, 500. 00	1,500.00	1, 500. 00	1, 500. 00				

種 別	管路材・ダクト (電気)										 中部地方整備	請局 単位	: 円
	品目	規	格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	鉄筋コンクリートケーブルトラフ	直線用 1000×70×75	(蓋付)	m		2, 070. 00			2, 070. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×70×75 (蓋付)	m		2, 320. 00			2, 320. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×120×75	(蓋付)	m		3, 340. 00			3, 340. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×150×90	(蓋付)	m		4, 520. 00			4, 520. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×150×12	0 (蓋付)	m		4, 620. 00			4, 620. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×200×90	(蓋付)	m		5, 800. 00			5, 800. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×200×17	0 (蓋付)	m		6, 600. 00			6, 600. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×250×17	0 (蓋付)	m		7, 780. 00			7, 780. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×300×17	0 (蓋付)	m		9, 240. 00			9, 240. 00				
	鉄筋コンクリートケーブルトラフ	直線用 500×400×21	5 (蓋付)	m		13, 400. 00			13, 400. 00				

種 別	配電機器								 		中部地方整備	情局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	分電盤キャビネット	屋外用 400×500×140	面	17, 300. 00	17, 300. 00	17, 300. 00	17, 300. 00	17, 300. 00					
	1	1	I	1									

種 別	照明器具										中部地方整体	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	ブリンカライト	LED式 BH-2LED	個	180, 000	180, 000	180, 000	180,000	180, 000					
	セラミックメタルハライドランプ	CMT 150W	個	16, 800	16, 800	16, 800	16, 800	16, 800					
	セラミックメタルハライドランプ	CMT 220W	個	17, 600	17, 600	17, 600	17, 600	17, 600					
	セラミックメタルハライドランプ	CMT 360W	個	18, 700	18, 700	18, 700	18, 700	18, 700					
	メタルハライドランプ	MT 7 0 W	個	13, 400	13, 400	13, 400	13, 400	13, 400					
	電球	ブリンカライト用 100W	個	650	650	650	650	650					
	落下防止ワイヤー	SUS 3 0 4	個	2, 380	2, 380	2, 380	2, 380	2, 380					
	トンネル照明器具取付金具	SUS304 t=3mm	組	9, 600	9, 600	9, 600	9, 600	9, 600					

種 別	外線・接地材料										中部地方整備	前局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	無溶接固定金具	KSクルリン KD-S、KD-W	個	340.00	340. 00	340.00	340.00	340.00					
	軽腕金LGA (電力規格品)	1.5 ヒ(高圧3線引留)	本	5, 710. 00	5, 710. 00	5, 710. 00	5, 710. 00	5, 710. 00					
	1	1		I		1		1		1			

種 別	電気設備その他									中部地	方整備局	単位	: 円
	品 目	規格	単位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	クロージャー	小型(穴数:2*2、実装数:1*1、L≦400以下)	組	71, 200	71, 200	71, 200	71, 200	71, 200					
	クロージャー	中型 (穴数:2*2、実装数:1*1、L≦500以下)	組	71, 200	71, 200	71, 200	71, 200	71, 200					
	クロージャー	大型 (穴数:2*2、実装数:1*1、L≦700以下)	組	127, 000	127, 000	127,000	127, 000	127, 000					
	クロージャー	後分岐型(穴数:2*2、実装数:1*1、L≦900以下)	組	130, 000	130, 000	130, 000	130, 000	130, 000					
	クロージャー	小型(穴数:2*2、実装数:2*1、L≦400以下)	組	77, 200	77, 200	77, 200	77, 200	77, 200					
	クロージャー	中型(穴数:2*2、実装数:2*1、L≦500以下)	組	77, 200	77, 200	77, 200	77, 200	77, 200					
	クロージャー	大型 (穴数:2*2、実装数:2*1、L≦700以下)	組	133, 000	133, 000	133, 000	133, 000	133, 000					
	クロージャー	後分岐型(穴数:2*2、実装数:2*1、L≦900以下)	組	130, 000	130, 000	130, 000	130, 000	130, 000					
	クロージャー	小型(穴数:2*2、実装数:2*2、L≦400以下)	組	83, 200	83, 200	83, 200	83, 200	83, 200					
	クロージャー	中型 (穴数:2*2、実装数:2*2、L≦500以下)	組	83, 200	83, 200	83, 200	83, 200	83, 200					
	クロージャー	大型 (穴数:2*2、実装数:2*2、L≦700以下)	組	139, 000	139, 000	139, 000	139,000	139, 000					
	クロージャー	後分岐型(穴数:2*2、実装数:2*2、L≦900以下)	組	130, 000	130, 000	130, 000	130,000	130, 000					
	クロージャー本体パッキン	小型 (L≦400以下用)	組	7, 120	7, 120	7, 120	7, 120	7, 120					
	クロージャー本体パッキン	中型(L≦500以下用)	組	7, 120	7, 120	7, 120	7, 120	7, 120					
	クロージャー本体パッキン	大型 (L≦700以下用)	組	6, 630	6, 630	6, 630	6, 630	6, 630					
	クロージャー本体パッキン	後分岐型(L≦900以下用)	組	9, 030	9, 030	9, 030	9, 030	9, 030					
	クロージャー分岐用付属品	小型 (L≦400以下用)	組	14, 000	14, 000	14, 000	14, 000	14, 000					
	クロージャー分岐用付属品	中型(L≦500以下用)	組	14, 000	14, 000	14, 000	14, 000	14, 000					
	クロージャー分岐用付属品	大型 (L≦700以下用)	組	12, 300	12, 300	12, 300	12, 300	12, 300					
	クロージャー分岐用付属品	後分岐型(L≦900以下用)	組	10, 000	10, 000	10, 000	10, 000	10, 000					
	片端コネクタコード	4 CテープーF C コネクタ*4 (SM: 1 m)	本	10, 400	10, 400	10, 400	10, 400	10, 400					
	片端コネクタコード	4 CテープーF C コネクタ*4 (SM: 2 m)	本	10, 400	10, 400	10, 400	10, 400	10, 400					
	片端コネクタコード	4 CテープーF C コネクタ*4 (SM: 3 m)	本	10, 500	10, 500	10, 500	10, 500	10, 500					
	片端コネクタコード	4 CテープーF Cコネクタ*4 (SM:5 m)	本	10, 700	10, 700	10, 700	10, 700	10, 700					
	片端コネクタコード	4 CテープーF Cコネクタ*4 (SM:10m)	本	11, 200	11, 200	11, 200	11, 200	11, 200					

種 別	電気設備その他											中部地方整備	局 単位	: 円
	品目	規	格	単位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	片端コネクタコード	4 CテープーSCコネクタ* 4	(SM:1m)	本	9, 600	9, 600	9, 600	9, 600	9, 600					
	片端コネクタコード	4 CテープーS Cコネクタ* 4	(SM: 2m)	本	9, 690	9, 690	9, 690	9, 690	9, 690					
	片端コネクタコード	4 CテープーSCコネクタ* 4	(SM: 3m)	本	9, 780	9, 780	9, 780	9, 780	9, 780					
	片端コネクタコード	4 CテープーSCコネクタ* 4	(SM: 5m)	本	9, 960	9, 960	9, 960	9, 960	9, 960					
	片端コネクタコード	4 Cテープー S C コネクタ * 4	(SM: 10m)	本	10, 400	10, 400	10, 400	10, 400	10, 400					
	片端コネクタコード	4 CテープーF Cコネクタ* 4	(DSF: 1m)	本	14, 800	14, 800	14, 800	14, 800	14, 800					
	片端コネクタコード	4 CテープーF Cコネクタ* 4	(DSF: 2m)	本	14, 900	14, 900	14, 900	14, 900	14, 900					
	片端コネクタコード	4 CテープーF C コネクタ* 4	(DSF: 3m)	本	15, 100	15, 100	15, 100	15, 100	15, 100					
	片端コネクタコード	4 CテープーF Cコネクタ* 4	(DSF: 5m)	本	15, 400	15, 400	15, 400	15, 400	15, 400					
	片端コネクタコード	2 CテープーF Cコネクタ* 2	(SM: 1m)	本	5, 860	5, 860	5, 860	5, 860	5, 860					
	片端コネクタコード	2 CテープーF Cコネクタ* 2	(SM: 2m)	本	5, 920	5, 920	5, 920	5, 920	5, 920					
	片端コネクタコード	2 CテープーF Cコネクタ* 2	(SM: 3m)	本	6, 030	6, 030	6, 030	6, 030	6, 030					
	片端コネクタコード	2 CテープーF Cコネクタ* 2	(SM:5m)	本	6, 190	6, 190	6, 190	6, 190	6, 190					
	片端コネクタコード	2 CテープーF Cコネクタ* 2	(SM: 10m)	本	6, 590	6, 590	6, 590	6, 590	6, 590					
	片端コネクタコード	2 CテープーS Cコネクタ* 2	(SM:1m)	本	5, 460	5, 460	5, 460	5, 460	5, 460					
	片端コネクタコード	2 CテープーS Cコネクタ* 2	(SM: 2m)	本	5, 520	5, 520	5, 520	5, 520	5, 520					
	片端コネクタコード	2 CテープーSCコネクタ* 2	(SM: 3m)	本	5, 620	5, 620	5, 620	5, 620	5, 620					
	片端コネクタコード	2 CテープーSCコネクタ* 2	(SM:5m)	本	5, 790	5, 790	5, 790	5, 790	5, 790					
	片端コネクタコード	2 CテープーSCコネクタ* 2	(SM: 10m)	本	6, 190	6, 190	6, 190	6, 190	6, 190					
	片端コネクタコード	1 C - F Cコネクタ*1 (SM	[: 1 m)	本	1,740	1,740	1,740	1,740	1,740					
	片端コネクタコード	1 C - F Cコネクタ*1 (SM	[: 2 m)	本	1,800	1,800	1,800	1,800	1,800					
	片端コネクタコード	1 C - F Cコネクタ*1(SM	[:3m)	本	1,870	1,870	1,870	1,870	1,870					
	片端コネクタコード	1 C - F Cコネクタ*1(SM	[:5m)	本	2,010	2, 010	2,010	2,010	2, 010			1		
	片端コネクタコード	1 C - F Cコネクタ*1 (SM	[: 1 0 m)	本	2, 340	2, 340	2, 340	2, 340	2, 340			1		
	片端コネクタコード	1 C - S Cコネクタ*1 (SM	[: 1 m)	本	1,540	1, 540	1, 540	1, 540	1,540					

種 別	電気設備その他								 	中部地方整例	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	片端コネクタコード	1 C-S Cコネクタ*1 (SM: 2 m)	本	1,600	1,600	1,600	1,600	1,600				
	片端コネクタコード	1 C-S Cコネクタ*1 (SM:3m)	本	1,670	1,670	1,670	1,670	1,670				
	片端コネクタコード	1 C-S Cコネクタ*1 (SM:5m)	本	1,800	1,800	1,800	1,800	1,800				
	片端コネクタコード	1 C - S Cコネクタ*1 (SM:10m)	本	2, 140	2, 140	2, 140	2, 140	2, 140				
	両端コネクタコード	FCコネクターFCコネクタ (SM:1m)	本	3, 420	3, 420	3, 420	3, 420	3, 420				
	両端コネクタコード	F C コネクター F C コネクタ (SM: 5 m)	本	3, 700	3, 700	3, 700	3, 700	3, 700				
	両端コネクタコード	FCコネクターFCコネクタ (SM:10m)	本	4, 060	4, 060	4, 060	4, 060	4, 060				
	両端コネクタコード	FCコネクターFCコネクタ (SM:15m)	本	4, 350	4, 350	4, 350	4, 350	4, 350				
	両端コネクタコード	FCコネクターFCコネクタ (SM:20m)	本	4, 690	4, 690	4, 690	4, 690	4, 690				
	両端コネクタコード	S C コネクター S C コネクタ (SM: 1 m)	本	3, 020	3, 020	3, 020	3, 020	3, 020				
	両端コネクタコード	S C コネクター S C コネクタ (SM: 5 m)	本	3, 300	3, 300	3, 300	3, 300	3, 300				
	両端コネクタコード	SCコネクターSCコネクタ (SM:10m)	本	3, 650	3, 650	3, 650	3, 650	3, 650				
	両端コネクタコード	S C コネクター S C コネクタ (SM: 15m)	本	3, 950	3, 950	3, 950	3, 950	3, 950				
	両端コネクタコード	SCコネクターSCコネクタ (SM:20m)	本	4, 280	4, 280	4, 280	4, 280	4, 280				
	両端コネクタコード	F C コネクター F C コネクタ (D S F : 5 m)	本	5, 290	5, 290	5, 290	5, 290	5, 290				
	両端コネクタコード	F C コネクター F C コネクタ (D S F: 10 m)	本	5, 820	5, 820	5, 820	5, 820	5, 820				
	両端コネクタコード	F C コネクター F C コネクタ (D S F: 15 m)	本	6, 360	6, 360	6, 360	6, 360	6, 360				
	両端コネクタコード	F C コネクター F C コネクタ (D S F: 20 m)	本	6, 880	6, 880	6, 880	6, 880	6, 880				
	光融着トレイ	4芯用 融着トレイカバー付き	個	1, 240	1, 240	1, 240	1, 240	1, 240				
	光融着トレイ	8 芯用 融着トレイカバー付き	個	1,240	1, 240	1, 240	1, 240	1, 240				
	光融着トレイ	12芯用 融着トレイカバー付き	個	1, 240	1, 240	1, 240	1, 240	1, 240				
	光ファイバ用分割管	I F – 1 6	m	222	222	222	222	222				
	光ファイバ用分割管	I F - 2 2	m	234	234	234	234	234				
	光ファイバ用分割管	I F - 2 4	m	240	240	240	240	240				
	光ケーブル テープスロット型	4 Cテープ SM: 4	m	387	387	387	387	387				

種 別	電気設備その他									中部地方整備	局 単位	: 円
	品目	規格	単位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	光ケーブル テープスロット型	4 Cテープ SM: 8	m	412	412	412	412	412				
	光ケーブル テープスロット型	4 C テープ SM: 12	m	436	436	436	436	436				
	光ケーブル テープスロット型	4 C テープ SM: 16	m	462	462	462	462	462				
	光ケーブル テープスロット型	4 C テープ SM: 20	m	486	486	486	486	486				
	光ケーブル テープスロット型	4 Cテープ SM: 2 4	m	528	528	528	528	528				
	光ケーブル テープスロット型	4 Cテープ SM: 28	m	568	568	568	568	568				
	光ケーブル テープスロット型	4 C テープ SM: 40	m	626	626	626	626	626				
	光ケーブル テープスロット型	4 Cテープ SM: 6 0	m	784	784	784	784	784				
	光ケーブル テープスロット型	4 Cテープ SM: 80	m	929	929	929	929	929				
	光ケーブル テープスロット型	4 C テープ SM: 100	m	1,050	1,050	1,050	1,050	1,050				
	光ケーブル テープスロット型	4 C テープ SM: 20 DSF: 20	m	1,050	1,050	1, 050	1, 050	1,050				
	光ケーブル テープスロット型	4 Cテープ SM: 20 DSF: 40	m	1, 480	1, 480	1, 480	1, 480	1, 480				
	光ケーブル テープスロット型	4 Cテープ SM: 20 DSF: 60	m	1,880	1,880	1, 880	1,880	1,880				
	光ケーブル テープスロット型	4 C テープ SM: 20 DSF: 80	m	2, 260	2, 260	2, 260	2, 260	2, 260				
	光ケーブル テープスロット型	4 Cテープ SM: 40 DSF: 20	m	1,270	1, 270	1, 270	1, 270	1, 270				
	光ケーブル テープスロット型	4 C テープ SM: 40 DSF: 40	m	1,670	1,670	1,670	1,670	1,670				
	光ケーブル テープスロット型	4 Cテープ SM: 40 DSF: 60	m	2, 050	2, 050	2, 050	2, 050	2, 050				
	光ケーブル テープスロット型	4 Cテープ SM: 40 DSF: 80	m	2, 620	2, 620	2, 620	2, 620	2, 620				
	光ケーブル テープスロット型	4 Cテープ SM: 60 DSF: 20	m	1,470	1, 470	1, 470	1, 470	1, 470				
	光ケーブル テープスロット型	4 Cテープ SM: 60 DSF: 40	m	1,850	1, 850	1, 850	1,850	1, 850				
	光ケーブル テープスロット型	4 Cテープ SM: 60 DSF: 60	m	2, 410	2, 410	2, 410	2, 410	2, 410				
	光ケーブル テープスロット型	4 Cテープ SM: 60 DSF: 80	m	2, 790	2, 790	2, 790	2, 790	2, 790				
	光ケーブル テープスロット型	4 Cテープ SM: 80 DSF: 20	m	1,640	1,640	1, 640	1,640	1,640				
	光ケーブル テープスロット型	4 Cテープ SM:80 DSF:40	m	2, 200	2, 200	2, 200	2, 200	2, 200				
	光ケーブル テープスロット型	4 Cテープ SM:80 DSF:60	m	2, 580	2, 580	2, 580	2, 580	2, 580				

種 別	電気設備その他								 	_	中部地方整備	備局 単位	: 円
	品目	規格	単位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	光ケーブル テープスロット型	4 Cテープ SM:80 DSF:80	m	2, 960	2, 960	2, 960	2, 960	2, 960					
	光ケーブル テープスロット型	4 Cテープ SM: 100 DSF: 20	m	2, 000	2, 000	2,000	2,000	2,000					
	光ケーブル テープスロット型	4 Cデープ SM: 100 DSF: 40	m	2, 370	2, 370	2, 370	2, 370	2, 370					
	光ケーブル テープスロット型	4 Cデープ SM: 100 DSF: 60	m	2, 750	2, 750	2, 750	2, 750	2, 750					
	光ケーブル テープスロット型	4 Cテープ SM: 100 DSF: 80	m	3, 210	3, 210	3, 210	3, 210	3, 210					
	光ケーブル テープスロット型	4Cデープ SSF SM:8	m	546	546	546	546	546					
	光ケーブル テープスロット型	4 Cテープ SSF SM: 16	m	597	597	597	597	597					
	光ケーブル テープスロット型	4 Cテープ SSF SM: 20	m	620	620	620	620	620					
	光ケーブル テープスロット型	4 Cテープ SSF SM: 2 4	m	662	662	662	662	662					
	光ケーブル テープスロット型	4 Cテープ SSF SM: 4 0	m	760	760	760	760	760					
	光ケーブル テープスロット型	4 Cテープ SSF SM: 6 0	m	919	919	919	919	919					
	光ケーブル テープスロット型	4 Cテープ SSF SM: 8 0	m	1, 060	1,060	1,060	1, 060	1,060					
	光ケーブル テープスロット型	4 Cテープ SSF SM: 100	m	1, 190	1, 190	1, 190	1, 190	1, 190					
	光ケーブル テープスロット型	4 Cテープ SSD SM: 2 0	m	598	598	598	598	598					
	光ケーブル テープスロット型	4 Cテープ SSD SM: 4 0	m	738	738	738	738	738					
	光ケーブル テープスロット型	4 Cテープ SSD SM: 6 0	m	896	896	896	896	896					
	光ケーブル テープスロット型	4 Cテープ SSD SM: 8 0	m	1, 040	1,040	1,040	1, 040	1,040					
	光ケーブル テープスロット型	4 Cテープ SSD SM: 100	m	1, 160	1, 160	1, 160	1, 160	1, 160					

種 別	機械工具										中部地方整備	情局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	ダイヤモンドビット損耗費	径46 12ct	m	2, 220. 00	2, 220. 00	2, 220. 00	2, 220. 00	2, 220. 00					
	ダイヤモンドリーマ損耗費	径46 4ct	m	600.00	600.00	600.00	600.00	600.00					
	区画線消去用カッター	3個/組	組	13, 600	13, 600	13, 600	13, 600	13, 600					
	1	1			l				L	l			

種 別	燃料・潤滑油										中部地方整備	請局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24				備	考
	酸素	ボンベ	m 3		510.00			505. 00					
	アセチレン	ボンベ	kg		2, 220. 00			2, 170. 00					
										<u> </u>			

材 料 単 価 【設計】

2025年11月

種 別	機械材料												中部地	方整備局 単位	左: 円
		品	目	規	格	単位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	ステンレス鋼板	SUS30	0 4 N 2	t 4~6		k g	760.00	760.00	760.00	760.00	760.00			機械設備工事」	以外適用不可
	ステンレス鋼板	SUS30	0 4 N 2	t 1 5~2 5		k g	920.00	920.00	920.00	920.00	920.00			機械設備工事具	以外適用不可
	ステンレス鋼板	SUS30	0 4 N 2	t 2 6~4 0		k g	930.00	930.00	930.00	930.00	930. 00			機械設備工事具	以外適用不可
	ステンレス鋼板	SUS30	0 4 N 2	t 4 1 ~ 6 5		k g	940. 00	940.00	940.00	940.00	940.00			機械設備工事具	以外適用不可
	ステンレス鋼板	SUS30	0 4 N 2	t 5 1 ~		k g	940.00	940.00	940.00	940.00	940.00			機械設備工事場	以外適用不可
	ステンレス鋼板	SUS30	0 4 N 2	t 7~9		k g	770.00	770.00	770.00	770.00	770.00				
	ステンレス鋼板	SUS30	0 4 N 2	t 10~14		k g	910.00	910.00	910.00	910.00	910.00				
	ステンレス鋼鈑	SUS31	1 6	t 1 5~2 5		k g	1, 070. 00	1, 070. 00	1, 070. 00	1, 070. 00	1, 070. 00			機械設備工事」	以外適用不可
	ステンレス鋼鈑	SUS31	1 6	t 26~40		k g	1, 080. 00	1, 080. 00	1, 080. 00	1, 080. 00	1, 080. 00			機械設備工事」	以外適用不可
	ステンレス鋼鈑	SUS31	1 6	t 4 1 ~ 6 5		k g	1, 090. 00	1, 090. 00	1, 090. 00	1, 090. 00	1, 090. 00			機械設備工事具	以外適用不可
	ステンレス鋳綱	ゲート用ロ	コーラー	S C S 1 3		k g	3, 080. 00	3, 080. 00	3, 080. 00	3, 080. 00	3, 080. 00			機械設備工事具	人外適用不可
	ステンレス鋳綱	ゲート用ロ	コーラー	SCS3		k g	3, 080. 00	3, 080. 00	3, 080. 00	3, 080. 00	3, 080. 00			機械設備工事具	人外適用不可
	鋳鋼(ゲート用ロ	ーラ)		S C 4 5 0		k g	730. 00	730.00	730. 00	730.00	730. 00			機械設備工事具	以外適用不可
	鋳鋼(ゲート用ロ	ーラ)		S C 4 8 0		k g	730. 00	730.00	730. 00	730.00	730. 00			機械設備工事具	人外適用不可
	鋳鋼(ゲート用ロ	ーラ)		S CMn 2 B		k g	840.00	840.00	840.00	840.00	840.00			機械設備工事具	人外適用不可
	鋳鋼(ゲート用ロ	ーラ)		SCMn3B		k g	840.00	840.00	840.00	840.00	840.00			機械設備工事」	以外適用不可
	鋳鋼(ゲート用ロ	ーラ)		S CM n C r 2 B		k g	970.00	970.00	970.00	970.00	970. 00			機械設備工事具	以外適用不可
	鋳鋼(ゲート用ロ	ーラ)		S CMn Cr 3 B		k g	970.00	970.00	970.00	970.00	970.00			機械設備工事具	人外適用不可
	オイルレスベアリ	ング		埋込型 50×65×	502個	個	11, 500	11, 500	11, 500	11, 500	11, 500			機械設備工事具	人外適用不可
	オイルレスベアリ	ング		埋込型 50×65×	50 4個	個	11, 500	11, 500	11, 500	11, 500	11, 500			機械設備工事具	人外適用不可
	オイルレスベアリ	ング		埋込型 50×65×	50 6個	個	10, 400	10, 400	10, 400	10, 400	10, 400			機械設備工事具	以外適用不可
	オイルレスベアリ	ング		埋込型 50×65×	508個	個	10, 400	10, 400	10, 400	10, 400	10, 400			機械設備工事具	人外適用不可
	オイルレスベアリ	ング		埋込型 50×65×	50 10個以上	個	9, 820. 00	9, 820. 00	9, 820. 00	9, 820. 00	9, 820. 00			機械設備工事具	人外適用不可
	オイルレスベアリ	ング		埋込型 100×12	0×100 2個	個	33, 700	33, 700	33, 700	33, 700	33, 700			機械設備工事具	人外適用不可
	オイルレスベアリ	ング		埋込型 100×12	0×100 4個	個	33, 700	33, 700	33, 700	33, 700	33, 700			機械設備工事場	以外適用不可

種 別	機械材料									中部地方	整備局 単位:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備考
	オイルレスベアリング	埋込型 100×120×100 6個	個	30, 400	30, 400	30, 400	30, 400	30, 400			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 100×120×100 8個	個	30, 400	30, 400	30, 400	30, 400	30, 400			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 100×120×100 10個以上	個	28, 900	28, 900	28, 900	28, 900	28, 900			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 150×175×150 2個	個	75, 300	75, 300	75, 300	75, 300	75, 300			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 150×175×150 4個	個	75, 300	75, 300	75, 300	75, 300	75, 300			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 150×175×150 6個	個	67, 900	67, 900	67, 900	67, 900	67, 900			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 150×175×150 8個	個	67, 900	67, 900	67, 900	67, 900	67, 900			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 150×175×150 10個以上	個	64, 500	64, 500	64, 500	64, 500	64, 500			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 200×230×200 2個	個	150, 000	150, 000	150, 000	150,000	150, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 200×230×200 4個	個	150, 000	150, 000	150, 000	150,000	150, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 200×230×200 6個	個	136, 000	136, 000	136, 000	136, 000	136, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 200×230×200 8個	個	136, 000	136, 000	136, 000	136, 000	136, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 200×230×200 10個以上	個	129, 000	129, 000	129, 000	129, 000	129, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 250×285×250 2個	個	247, 000	247, 000	247, 000	247, 000	247, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 250×285×250 4個	個	247, 000	247, 000	247, 000	247, 000	247, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 250×285×250 6個	個	224, 000	224, 000	224, 000	224, 000	224, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 250×285×250 8個	個	224, 000	224, 000	224, 000	224, 000	224, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 250×285×250 10個以上	個	211, 000	211,000	211,000	211,000	211,000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 300×340×300 2個	個	403, 000	403, 000	403, 000	403, 000	403, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 300×340×300 4個	個	403, 000	403, 000	403, 000	403, 000	403, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 300×340×300 6個	個	362, 000	362, 000	362, 000	362,000	362, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 300×340×300 8個	個	362, 000	362, 000	362, 000	362,000	362, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 300×340×300 10個以上	個	345, 000	345, 000	345, 000	345, 000	345, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 350×395×350 2個	個	665, 000	665, 000	665, 000	665, 000	665, 000			機械設備工事以外適用不可
	オイルレスベアリング	埋込型 350×395×350 4個	個	665, 000	665, 000	665, 000	665, 000	665, 000			機械設備工事以外適用不可

種 別	機械材料											中部地方整備	請局 単位	: 円
	品目	規	格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24				備	考
	オイルレスベアリング	埋込型 350×395×35	0 6個	個	598, 000	598, 000	598, 000	598, 000	598, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 350×395×35	0 8個	個	598, 000	598, 000	598, 000	598, 000	598, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 350×395×35	0 10個以上	個	567, 000	567, 000	567, 000	567, 000	567, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 400×450×40	0 2個	個	882, 000	882, 000	882, 000	882,000	882, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 400×450×40	0 4個	個	882,000	882, 000	882, 000	882,000	882, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 400×450×40	0 6個	個	795, 000	795, 000	795, 000	795, 000	795, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 400×450×40	0 8個	個	795, 000	795, 000	795, 000	795, 000	795, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 400×450×40	0 10個以上	個	756, 000	756, 000	756, 000	756, 000	756, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 450×505×45	0 2個	個	1, 210, 000	1, 210, 000	1, 210, 000	1, 210, 000	1, 210, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 450×505×45	0 4個	個	1, 210, 000	1, 210, 000	1, 210, 000	1, 210, 000	1, 210, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 450×505×45	0 6個	個	1, 090, 000	1, 090, 000	1, 090, 000	1, 090, 000	1, 090, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 450×505×45	0 8個	個	1, 090, 000	1, 090, 000	1, 090, 000	1, 090, 000	1, 090, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 450×505×45	0 10個以上	個	1, 040, 000	1, 040, 000	1, 040, 000	1, 040, 000	1, 040, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 500×560×50	0 2個	個	1, 620, 000	1,620,000	1, 620, 000	1,620,000	1, 620, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 500×560×50	0 4個	個	1, 620, 000	1,620,000	1, 620, 000	1,620,000	1, 620, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 500×560×50	0 6個	個	1, 450, 000	1, 450, 000	1, 450, 000	1, 450, 000	1, 450, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 500×560×50	0 8個	個	1, 450, 000	1, 450, 000	1, 450, 000	1, 450, 000	1, 450, 000				機械設備工事以	外適用不可
	オイルレスベアリング	埋込型 500×560×50	0 10個以上	個	1, 370, 000	1, 370, 000	1, 370, 000	1, 370, 000	1, 370, 000				機械設備工事以	外適用不可
	皿ボルト (SUS304)	M 1 0 × 2 0		本	38. 40	36. 40	36. 40	36. 40	36. 40					
	皿ボルト (SUS304)	M 1 0 × 3 0		本	46. 80	44. 40	44. 40	44. 40	44. 40					
	皿ボルト (SUS304)	M 1 0 × 4 0		本	56. 40	53. 50	53. 50	53. 50	53. 50					
	皿ボルト (SUS304)	M 1 0 × 5 0		本	63. 60	60. 40	60. 40	60. 40	60. 40					
	皿ポルト (SUS304)	M 1 0 × 7 5		本	108. 00	102.00	102.00	102.00	102. 00					
	皿ポルト (SUS304)	M 1 0 × 1 0 0		本	171. 00	162. 00	162.00	162.00	162. 00					
	皿ボルト (SUS304)	M 1 2 × 2 0		本	63. 60	60. 40	60. 40	60. 40	60. 40					

種 別	機械材料										中部地方整体	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	皿ボルト (SUS304)	M 1 2 × 3 0	本	69. 60	66. 10	66. 10	66. 10	66. 10					
	皿ボルト (SUS304)	M 1 2 × 4 0	本	86. 40	82. 00	82. 00	82. 00	82. 00					
	皿ボルト (SUS304)	M 1 2 × 5 0	本	100.00	95. 00	95. 00	95. 00	95. 00					
	皿ボルト (SUS304)	M 1 2 × 7 5	本	139. 00	132. 00	132. 00	132.00	132. 00					
	皿ボルト (SUS304)	M 1 2 × 1 0 0	本	189. 00	179. 00	179. 00	179.00	179. 00					
	皿ボルト (SUS304)	M 1 6 × 3 0	本	200.00	190.00	190. 00	190.00	190. 00					
	皿ボルト (SUS304)	M 1 6 × 4 0	本	222. 00	210.00	210.00	210.00	210.00					
	皿ボルト (SUS304)	M 1 6 × 5 0	本	265. 00	251.00	251.00	251.00	251. 00					
	皿ボルト (SUS304)	M 1 6 × 7 5	本	350.00	332.00	332.00	332.00	332. 00					
	皿ボルト (SUS304)	M 1 6 × 1 0 0	本	477. 00	453.00	453. 00	453.00	453. 00					
	皿ボルト (SUS304)	M 2 0 × 4 0	本	417. 00	396.00	396.00	396.00	396. 00					
	皿ボルト (SUS304)	M 2 0 × 5 0	本	472. 00	448. 00	448. 00	448.00	448. 00					
	皿ボルト (SUS304)	M 2 0 × 7 5	本	600.00	570.00	570.00	570.00	570.00					
	皿ボルト (SUS304)	M 2 0 × 1 0 0	本	708. 00	672. 00	672.00	672.00	672. 00					
	六角ボルト	M 8×16	本	3.70	3. 50	3. 50	3. 50	3. 50					
	六角ボルト	M 8×20	本	4. 10	3. 80	3. 80	3. 80	3. 80					
	六角ボルト	M 8 × 3 0	本	5. 40	5. 10	5. 10	5. 10	5. 10					
	六角ボルト	M 1 0 × 2 0	本	7.80	7. 40	7.40	7. 40	7. 40					
	六角ボルト	M 1 0 × 3 0	本	9.60	9. 10	9. 10	9. 10	9. 10					
	六角ボルト	M 1 0 × 1 2 5	本	28. 80	27. 30	27. 30	27. 30	27. 30					
	六角ボルト	M 1 0 × 1 7 5	本	38. 90	36. 90	36. 90	36. 90	36. 90					
	六角ボルト	M 1 0 × 2 0 0	本	44. 00	41. 70	41. 70	41. 70	41. 70					
	六角ボルト	M 1 2 × 2 0	本	9.50	8. 80	8. 80	8. 80	8. 80					
	六角ボルト	M 1 2 × 1 2 5	本	38. 80	36. 80	36. 80	36. 80	36. 80					
	六角ボルト	M 1 4 × 2 0	本	17. 70	16. 80	16. 80	16. 80	16. 80					

種 別	機械材料								 	 中部地方整備	局 単位	: 円
	品 目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	六角ボルト	M 1 4 × 3 0	本	21. 30	20. 30	20. 30	20. 30	20. 30				
	六角ボルト	M 1 4×4 0	本	25. 40	24. 10	24. 10	24. 10	24. 10				
	六角ボルト	M 1 4 × 5 0	本	29. 80	28. 30	28. 30	28. 30	28. 30				
	六角ボルト	M 1 4 × 7 5	本	40. 60	38. 60	38. 60	38. 60	38. 60				
	六角ボルト	M 1 4 × 1 0 0	本	51. 50	49. 00	49. 00	49. 00	49. 00				
	六角ボルト	M 1 4 × 1 2 5	本	62. 20	59. 10	59. 10	59. 10	59. 10				
	六角ボルト	M14×150	本	72. 90	69. 20	69. 20	69. 20	69. 20				
	六角ボルト	M 1 4 × 2 0 0	本	102. 00	97. 30	97. 30	97. 30	97. 30				
	六角ボルト	M 1 6 × 1 2 5	本	59. 80	56. 80	56. 80	56. 80	56. 80				
	六角ボルト	M 1 8 × 3 0	本	41. 40	39. 30	39. 30	39. 30	39. 30				
	六角ボルト	M 1 8 × 4 0	本	47. 80	45. 40	45. 40	45. 40	45. 40				
	六角ボルト	M 1 8 × 5 0	本	55. 10	52. 40	52. 40	52. 40	52. 40				
	六角ボルト	M 1 8 × 7 5	本	74. 10	70. 40	70. 40	70. 40	70. 40				
	六角ボルト	M 1 8 × 1 0 0	本	93. 10	88. 50	88. 50	88. 50	88. 50				
	六角ボルト	M 1 8 × 1 2 5	本	111.00	106.00	106.00	106.00	106. 00				
	六角ボルト	M 1 8 × 1 5 0	本	130.00	123. 00	123. 00	123.00	123. 00				
	六角ボルト	M 1 8 × 2 0 0	本	181.00	172.00	172.00	172.00	172. 00				
	六角ボルト	M 2 0 × 3 0	本	38. 20	36. 20	36. 20	36. 20	36. 20				
	六角ボルト	M 2 0 × 1 2 5	本	99. 70	94. 60	94. 60	94. 60	94. 60				
	六角ボルト	M 2 2 × 4 0	本	53. 90	51. 20	51. 20	51. 20	51. 20				
	六角ボルト	M 2 2 × 1 2 5	本	120.00	114. 00	114. 00	114.00	114. 00				
	六角ボルト	M 2 4 × 1 2 5	本	147. 00	139. 00	139. 00	139.00	139. 00				
	六角ボルト	M 3 0 × 7 5	本	220.00	209. 00	209.00	209.00	209. 00				
	六角ボルト	M 3 0 × 1 2 5	本	316.00	300.00	300.00	300.00	300.00				
	六角ボルト	M 3 6 × 7 5	本	445. 00	423. 00	423. 00	423.00	423. 00				

種 別	機械材料										中部地方整体	帯局 単位	1:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	六角ボルト	M 3 6 × 1 0 0	本	536. 00	509.00	509.00	509.00	509.00					
	六角ボルト	M 3 6 × 1 5 0	本	714. 00	678. 00	678.00	678.00	678.00					
	六角ボルト	M 3 6 × 2 0 0	本	955. 00	906.00	906.00	906.00	906.00					
	六角ボルト	M 4 2 × 1 0 0	本	833. 00	790. 00	790. 00	790.00	790.00					
	六角ボルト	M 4 2 × 1 5 0	本	1,090.00	1, 030. 00	1, 030. 00	1, 030. 00	1, 030. 00					
	六角ボルト	M 4 2 × 2 0 0	本	1, 440. 00	1, 370. 00	1, 370. 00	1, 370. 00	1, 370. 00					
	六角ボルト	M 4 2 × 2 5 0	本	1, 810. 00	1,720.00	1, 720. 00	1, 720. 00	1, 720. 00					
	六角ボルト	M 4 8 × 1 0 0	本	1, 420. 00	1, 350. 00	1, 350. 00	1, 350. 00	1, 350. 00					
	六角ボルト	M 4 8 × 1 5 0	本	1,840.00	1,740.00	1,740.00	1, 740. 00	1,740.00					
	六角ボルト	M 4 8 × 2 0 0	本	2, 380. 00	2, 260. 00	2, 260. 00	2, 260. 00	2, 260. 00					
	六角ボルト	M 4 8 × 2 5 0	本	2, 940. 00	2, 790. 00	2, 790. 00	2, 790. 00	2, 790. 00					
	六角ボルト	M 4 8 × 3 0 0	本	3, 570. 00	3, 390. 00	3, 390. 00	3, 390. 00	3, 390. 00					
	六角ボルト (SUS304)	M 8×16	本	12. 70	12. 00	12. 00	12. 00	12. 00					
	六角ボルト (SUS304)	M 8×20	本	14. 30	13. 50	13. 50	13. 50	13. 50					
	六角ボルト (SUS304)	M 8×30	本	18. 40	17. 40	17. 40	17. 40	17. 40					
	六角ボルト(SUS304)	M 1 0 × 7 5	本	60. 70	57. 60	57. 60	57. 60	57. 60					
	六角ボルト (SUS304)	M 1 0 × 1 0 0	本	76. 20	72. 30	72. 30	72. 30	72. 30					
	六角ボルト (SUS304)	M 1 0 × 1 2 5	本	119. 00	113. 00	113. 00	113.00	113.00					
	六角ボルト (SUS304)	M 1 0 × 1 5 0	本	140. 00	133. 00	133. 00	133.00	133. 00					
	六角ボルト(SUS304)	M12×20	本	37. 70	35. 80	35. 80	35. 80	35. 80					
	六角ボルト (SUS304)	M12×75	本	87. 20	82. 80	82. 80	82. 80	82. 80					
	六角ボルト(SUS304)	M12×100	本	109. 00	103. 50	103. 50	103.50	103. 50					
	六角ボルト(SUS304)	M12×150	本	159. 00	151.00	151.00	151.00	151.00					
	六角ボルト(SUS304)	M14×30	本	109. 00	103. 00	103. 00	103.00	103.00					
	六角ボルト (SUS304)	M 1 4 × 4 0	本	127. 00	120.00	120.00	120.00	120.00					

種 別	機械材料										中部地方整体	備局 単位	.: 円
	品 目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	六角ボルト (SUS304)	M14×50	本	147. 00	139. 00	139. 00	139.00	139. 00					
	六角ボルト (SUS304)	M14×75	本	198.00	188. 00	188. 00	188.00	188. 00					
	六角ボルト (SUS304)	M14×100	本	246.00	234. 00	234. 00	234.00	234. 00					
	六角ボルト (SUS304)	M16×30	本	89. 50	85. 00	85. 00	85. 00	85. 00					
	六角ボルト (SUS304)	M16×100	本	199.00	189. 00	189. 00	189.00	189. 00					
	六角ボルト (SUS304)	M16×150	本	284. 00	269. 00	269. 00	269.00	269.00					
	六角ボルト (SUS 3 0 4)	M16×200	本	561.00	532. 00	532. 00	532. 00	532. 00					
	六角ボルト (SUS304)	M18×40	本	211.00	200.00	200.00	200.00	200.00					
	六角ボルト (SUS304)	M 1 8 × 5 0	本	243. 00	230.00	230. 00	230.00	230. 00					
	六角ボルト (SUS304)	M18×75	本	328.00	311.00	311.00	311.00	311.00					
	六角ボルト (SUS 3 0 4)	M18×100	本	411.00	390. 00	390. 00	390.00	390.00					
	六角ボルト (SUS304)	M 1 8 × 1 5 0	本	576. 00	547. 00	547. 00	547.00	547. 00					
	六角ボルト (SUS 3 0 4)	M 2 0 × 4 0	本	180.00	171. 00	171. 00	171.00	171. 00					
	六角ボルト (SUS304)	M 2 0 × 1 0 0	本	333. 00	316. 00	316. 00	316.00	316. 00					
	六角ボルト (SUS304)	M 2 0 × 1 5 0	本	455. 00	432.00	432.00	432.00	432.00					
	六角ボルト (SUS304)	M 2 0 × 2 0 0	本	835. 00	793. 00	793. 00	793. 00	793. 00					
	六角ボルト (SUS304)	M 2 2 × 5 0	本	294. 00	279. 00	279.00	279.00	279. 00					
	六角ボルト (SUS304)	M 2 2 × 1 0 0	本	479.00	455. 00	455. 00	455.00	455. 00					
	六角ボルト (SUS304)	M 2 2 × 1 5 0	本	647. 00	614. 00	614. 00	614.00	614. 00					
	六角ボルト (SUS304)	M 2 2 × 2 0 0	本	1, 150. 00	1, 093. 00	1, 093. 00	1, 093. 00	1, 093. 00					
	六角ボルト (SUS304)	M 2 4 × 5 0	本	372. 00	353. 00	353. 00	353.00	353. 00					
	六角ボルト (SUS304)	M 2 4 × 7 5	本	480.00	456.00	456.00	456.00	456.00					
	六角ボルト (SUS304)	M 2 4 × 1 5 0	本	804. 00	763. 00	763. 00	763.00	763. 00					
	六角ボルト (SUS304)	M 2 4 × 2 0 0	本	1, 390. 00	1, 320. 00	1, 320. 00	1, 320. 00	1, 320. 00					
	六角ボルト (SUS304)	M 3 0 × 7 5	本	759. 00	721.00	721.00	721.00	721.00					

種 別	機械材料									中部地方整	備局 単位:	. 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	六角ボルト (SUS304)	M 3 0 × 1 0 0	本	924. 00	877. 00	877.00	877.00	877.00				
	六角ボルト (SUS304)	M 3 0 × 1 5 0	本	1, 230. 00	1, 170. 00	1, 170. 00	1, 170. 00	1, 170. 00				
	六角ボルト (SUS304)	M 3 0 × 2 0 0	本	1, 590. 00	1, 510. 00	1, 510. 00	1, 510. 00	1, 510. 00				
	六角ボルト (SUS304)	M 3 6 × 7 5	本	1, 720. 00	1, 640. 00	1,640.00	1, 640. 00	1, 640. 00				
	六角ボルト (SUS304)	M 3 6 × 1 0 0	本	2, 040. 00	1, 940. 00	1, 940. 00	1, 940. 00	1, 940. 00				
	六角ボルト (SUS304)	M 3 6 × 1 5 0	本	2, 830. 00	2, 690. 00	2, 690. 00	2, 690. 00	2, 690. 00				
	六角ボルト (SUS304)	M 3 6 × 2 0 0	本	3, 850. 00	3, 660. 00	3, 660. 00	3, 660. 00	3, 660. 00				
	六角ボルト (SUS304)	M 4 2 × 1 0 0	本	3, 880	3, 690	3, 690	3, 690	3, 690				
	六角ボルト (SUS304)	M 4 2 × 1 5 0	本	5, 040	4, 780	4, 780	4, 780	4, 780				
	六角ボルト (SUS304)	M 4 2 × 2 0 0	本	6, 630	6, 300	6, 300	6, 300	6, 300				
	六角ボルト (SUS304)	M 4 2 × 2 5 0	本	7,870	7, 480	7, 480	7, 480	7, 480				
	六角ナット	M 8	個	1.80	1.70	1.70	1.70	1.70				
	六角ナット	M 1 4	個	9. 10	8. 60	8. 60	8. 60	8. 60				
	六角ナット	M18	個	16. 80	15. 90	15. 90	15. 90	15. 90				
	六角ナット	M 3 0	個	88. 00	83. 60	83. 60	83. 60	83. 60				
	六角ナット	M 3 6	個	196.00	186.00	186. 00	186.00	186. 00				
	六角ナット	M 4 2	個	352.00	334. 00	334. 00	334.00	334.00				
	六角ナット	M 4 8	個	568. 00	539. 00	539. 00	539.00	539. 00				
	六角ナット (SUS304)	M 8	個	5. 90	5. 60	5. 60	5. 60	5. 60				
	六角ナット (SUS304)	M 1 4	個	42. 70	40. 50	40. 50	40. 50	40. 50				
	六角ナット (SUS304)	М 3 0	個	421.00	400.00	400.00	400.00	400.00				
	六角ナット (SUS304)	M 3 6	個	768. 00	729. 00	729. 00	729.00	729. 00				
	六角ナット (SUS304)	M 4 2	個	1, 240	1, 170	1, 170	1, 170	1, 170				
	ステンレス鋼板 SUS316L	t 4~6	k g	980	980	980	980	980			機械設備工事以外	卜適用不可
	ステンレス鋼板 SUS316L	t 7~14	k g	1, 130	1, 130	1, 130	1, 130	1, 130			機械設備工事以外	卜適 用不可

種 別	機械材料										中部地方整	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	ステンレス鋼板 SUS316L	t 1 5~2 5	kg	1, 140	1, 140	1, 140	1, 140	1, 140				機械設備工事以	外適用不可
	ステンレス鋼板 SUS316L	t 2 6~4 0	kg	1, 150	1, 150	1, 150	1, 150	1, 150				機械設備工事以	外適用不可
	ステンレス鋼板 SUS316L	t 4 1 ~ 5 0	kg	1, 160	1, 160	1, 160	1, 160	1, 160				機械設備工事以	外適用不可

種 別	中部独自共通材料										中部地方整備	清局 単位	生: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	構造用丸鋼	SS400 \$9 (9~11)	t	164, 000	162, 000	162, 000	161,000	162, 000					
	構造用丸鋼	SS400 \$\phi13 (12~13)	t		146, 000	146, 000		146, 000					
	丸鋼	無規格 6 mm~9 mm	t	158, 000	158, 000	158, 000	158,000	158, 000					
	構造用角形鋼管	STKR400 50×20×1.6	t	204, 000	204, 000	204, 000	204, 000	204, 000					
	構造用角形鋼管	STKR400 50×20×2. 3	t	214, 000	214, 000	214, 000	214, 000	214, 000					
	ワイヤロープ	1号品 径25 裸A種	m	1, 380. 00	1, 380. 00	1, 380. 00	1, 380. 00	1, 380. 00					
	ワイヤロープ	1号品 径31.5 裸A種	m	2, 070. 00	2, 070. 00	2, 070. 00	2, 070. 00	2, 070. 00					
	ワイヤロープ	1号品 径33.5 裸A種	m	2, 560. 00	2, 560. 00	2, 560. 00	2, 560. 00	2, 560. 00					
	ワイヤロープ	13号品 径11.2 裸B種	m	548. 00	548. 00	548.00	548.00	548. 00					
	ワイヤロープ	13号品 径12.5 裸B種	m	683. 00	683. 00	683. 00	683. 00	683. 00					
	ワイヤロープ	13号品 径22.4 裸A種	m	1, 530. 00	1, 530. 00	1, 530. 00	1, 530. 00	1, 530. 00					
	ストランドロープ	T6×7 径30 A種	m	3, 790. 00	3, 790. 00	3, 790. 00	3, 790. 00	3, 790. 00					
	ボルト・ナット	径13×180mm	本	61. 90	58. 80	58. 80	58. 80	58. 80					
	ボルト・ナット	径13×240mm	本	78. 00	74. 10	74. 10	74. 10	74. 10					
	ボルト・ナット	径13×270mm	本	86. 90	82. 50	82. 50	82. 50	82. 50					
	メインアンカー	径22×1000mm	本	5, 880. 00	5, 880. 00	5, 880. 00	5, 880. 00	5, 880. 00					
	メインアンカー	径22×1500mm	本	8, 330. 00	8, 330. 00	8, 330. 00	8, 330. 00	8, 330. 00					
	メインアンカー	径25×1000mm	本	7, 840. 00	7, 840. 00	7, 840. 00	7, 840. 00	7, 840. 00					
	メインアンカー	径25×1500mm	本	10, 500. 00	10, 500. 00	10, 500. 00	10, 500. 00	10, 500. 00					
	ルーフアンカー	径22×1000mm (2本用)	組	11, 600	11, 600	11, 600	11, 600	11, 600					
	ルーフアンカー	径22×1500mm (2本用)	組	16, 500	16, 500	16, 500	16, 500	16, 500					
	ルーフアンカー	径25×1000mm (2本用)	組	15, 400	15, 400	15, 400	15, 400	15, 400					
	ルーフアンカー	径25×1500mm (2本用)	組	20, 900	20, 900	20, 900	20, 900	20, 900					
	ルーフアンカー	径22×1000mm (4本用)	組	23, 300	23, 300	23, 300	23, 300	23, 300					
	ルーフアンカー	径 2 2×1 5 0 0 mm (4本用)	組	33, 000	33, 000	33, 000	33, 000	33, 000					

材	料	単	価	【設計】	2025年11月

種 別	中部独自共通材料										中部地方整備局	身 単位	:: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	ルーフアンカー	径25×1000mm (4本用)	組	30, 700	30, 700	30, 700	30, 700	30, 700					
	ルーフアンカー	径25×1500mm (4本用)	組	41, 900	41, 900	41, 900	41, 900	41, 900					
	コーナーチャンネル	S型 (ステンレス)	m	4, 180. 00	4, 180. 00	4, 180. 00	4, 180. 00	4, 180. 00					
	フリクションカッター	PC・PHC杭用 φ500	組	9, 000	9, 000	9, 000	9, 000	9, 000					
	フリクションカッター	PC・PHC杭用 φ600	組	9, 900	9, 900	9, 900	9, 900	9, 900					
	充填砂	防護柵用	m 3	6, 900. 00	6, 900. 00	6, 900. 00	6, 900. 00	6, 900. 00					
	丸太	杉 末口6cm L=6m	本	1, 850. 00	1, 660. 00	1, 660. 00	1, 610. 00	1, 660. 00					
	丸太	松 末口9cm L=0.9m	m 3	49, 000	51, 000	51, 000	51, 000	51, 000					
	丸太	松 土台木用 末口12cm L=3.2m	m 3	42, 000	48, 000	48, 000	48, 000	48, 000					
	枕木	松丸太 径9cm L=1.0m	本	550. 00	580. 00	580. 00	570.00	580.00					
	杭木	L=0.9m 10本詰	束	1, 920. 00	2, 380. 00	2, 380. 00	2, 380. 00	2, 380. 00					
	杭木	L=1.2m 10本詰	束	2, 620. 00	2, 550. 00	2, 550. 00	2, 550. 00	2, 550. 00					
	そだ	周0.6 m以上 25本詰 2.7 m	束	1, 900. 00	1, 900. 00	1, 900. 00	1, 900. 00	1, 900. 00					
	しがらそだ	L=3m以上 25本詰	束	9, 500. 00	9, 500. 00	9, 500. 00	9, 500. 00	9, 500. 00					
	型枠工	発泡スチロール	m	90. 00	90. 00	90. 00	90.00	90.00					
	継目板	ペーシ2枚 ボルトナット4本	組	1, 308. 00	1, 308. 00	1, 308. 00	1, 308. 00	1, 308. 00					
	投光器	500Wレフランプ	基	9, 310. 00	9, 310. 00	9, 310. 00	9, 310. 00	9, 310. 00					
	ピックスチール	シャンク丸型 1=60cm	本	2, 290. 00	2, 290. 00	2, 290. 00	2, 290. 00	2, 290. 00					
	ショーボンドSR	(ゴム、金属接着)	kg	4, 560. 00	4, 560. 00	4, 560. 00	4, 560. 00	4, 560. 00					
	エポキシ樹脂	ショーボンド#202	kg	3, 200. 00	3, 200. 00	3, 200. 00	3, 200. 00	3, 200. 00					
	エポキシ樹脂	ショーボンド#303 (C)	kg	3, 280. 00	3, 280. 00	3, 280. 00	3, 280. 00	3, 280. 00					
	スリップバー	φ 2 2 L=5 0 0	本	320. 00	320. 00	320. 00	320.00	320.00					
	視線誘導標	CO中用 矢印 光輝度反射 支柱 L=1450	本	7, 520	7, 520	7, 520	7, 520	7, 520					
	視線誘導標	土中用 矢印 光輝度反射 支柱 L=1750	本	7, 760	7, 760	7, 760	7, 760	7, 760					
	デリネーター (視線誘導標)	バネ式支柱付 φ 6 0. 5 用	本	16, 600	16, 600	16, 600	16, 600	16, 600					

種 別	中部独自共通材料										中部地方整備	帯局 単 位	1:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	デリネーター (視線誘導標)		本	7, 760. 00	7, 760. 00	7, 760. 00	7, 760. 00	7, 760. 00					
	デリネーター (視線誘導標)	φ 1 5 0 両面 土中用 メッキ品	本	11, 400	11, 400	11, 400	11, 400	11, 400					
	デリネーター (視線誘導標)	φ 1 5 0 片面 ガードレール用	本	8, 320. 00	8, 320. 00	8, 320. 00	8, 320. 00	8, 320. 00					
	デリネーター (視線誘導標)	φ 150 両面 ガードレール用	本	11, 400	11, 400	11, 400	11, 400	11, 400					
	デリネーター (視線誘導標)	φ 1 5 0 片面 構造物用	本	5, 600. 00	5, 600. 00	5, 600. 00	5, 600. 00	5, 600. 00					
	デリネーター (視線誘導標)	φ 1 5 O 両面 構造物用	本	7,760	7, 760	7, 760	7, 760	7, 760					
	デリネーター (視線誘導標)	φ 1 0 0 片面 コンクリート用	本	3, 680. 00	3, 680. 00	3, 680. 00	3, 680. 00	3, 680. 00					
	デリネーター (視線誘導標)	φ 1 0 0 両面 コンクリート用	本	4, 560. 00	4, 560. 00	4, 560. 00	4, 560. 00	4, 560. 00					
	デリネーター (視線誘導標)	φ 1 0 0 片面 高欄用	本	4, 590. 00	4, 590. 00	4, 590. 00	4, 590. 00	4, 590. 00					
	デリネーター (視線誘導標)	φ 1 0 0 両面 高欄用	本	5, 390. 00	5, 390. 00	5, 390. 00	5, 390. 00	5, 390. 00					
	デリネーター (視線誘導標)	φ 1 0 0 片面 フェンス用	本	3, 760. 00	3, 760. 00	3, 760. 00	3, 760. 00	3, 760. 00					
	デリネーター (視線誘導標)	φ 1 0 0 両面 フェンス用	本	4, 640. 00	4, 640. 00	4, 640. 00	4, 640. 00	4, 640. 00					
	デリネーター (頭部のみ)	φ 1 0 0 片面	個	2, 800. 00	2, 800. 00	2, 800. 00	2, 800. 00	2, 800. 00					
	デリネーター(頭部のみ)	φ 1 0 0 两面	個	3, 680. 00	3, 680. 00	3, 680. 00	3, 680. 00	3, 680. 00					
	大型デリネーター	構造物用 φ300 (ツバなし)	本	12, 900	12, 900	12, 900	12, 900	12, 900					
	大型デリネーター	土中用 φ300 (ツバなし)	本	13, 300	13, 300	13, 300	13, 300	13, 300					
	大型デリネーター	GR用 φ300 (ツバなし)	本	13, 300	13, 300	13, 300	13, 300	13, 300					
	大型デリネーター	頭部のみ φ300	個	10, 500	10, 500	10, 500	10, 500	10, 500					
	サヤ管	ガード用 STK400 φ 7 6. 3×4. 2×500	個	6, 220. 00	6, 220. 00	6, 220. 00	6, 220. 00	6, 220. 00					
	サヤ管	土中用 STK400	個	6, 790	6, 790	6, 790	6, 790	6, 790					
	反射シート	4 1 0 × 2 5 0	枚	2, 680. 00	2, 680. 00	2, 680. 00	2, 680. 00	2, 680. 00					
	標識柱	φ 6 0. 5×2. 3 STK 亜鉛メッキ	m	3, 260. 00	3, 260. 00	3, 260. 00	3, 260. 00	3, 260. 00					
	標識柱	φ 6 0. 5×3. 2 STK 亜鉛メッキ	m	4, 470. 00	4, 470. 00	4, 470. 00	4, 470. 00	4, 470. 00					
	標識柱	φ 7 6. 3×3. 2 STK 亜鉛メッキ	m	5, 710. 00	5, 710. 00	5, 710. 00	5, 710. 00	5, 710. 00					
	標識柱	φ 1 0 1 . 6 × 3 . 2 STK 亜鉛メッキ	m	7, 680. 00	7, 680. 00	7, 680. 00	7, 680. 00	7, 680. 00					

種 別	中部独自共通材料										中部地方整備	常局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	標識柱	アンカーボルト M10×70	本	82. 00	82. 00	82. 00	82. 00	82. 00					
	道路標識ステッカー	表示板番号 60×100	枚	940. 00	940. 00	940.00	940.00	940.00					
	道路標識用 取付アーム	φ 6 0. 5 用 φ 7 0 ~ 1 2 0	個	4, 190. 00	4, 190. 00	4, 190. 00	4, 190. 00	4, 190. 00					
	道路標識用 アルミ角バンド	5 0 × 1 0 1	個	940. 00	940.00	940.00	940.00	940.00					
	道路標識用 柱添架金具	F1型 φ60.5 φ121~160	組	4, 590. 00	4, 590. 00	4, 590. 00	4, 590. 00	4, 590. 00					
	道路標識用 柱添架金具	F1型 φ60.5 φ161~230	組	5, 510. 00	5, 510. 00	5, 510. 00	5, 510. 00	5, 510. 00					
	道路標識用 柱添架金具	F 2型	組	7, 250. 00	7, 250. 00	7, 250. 00	7, 250. 00	7, 250. 00					
	道路管理銘板	1-A型 150×400×2 封入レンズ型	枚	5, 610. 00	5, 610. 00	5, 610. 00	5, 610. 00	5, 610. 00					
	道路管理銘板	2-A型 100×200×2 封入レンズ型	枚	2, 020. 00	2, 020. 00	2, 020. 00	2, 020. 00	2, 020. 00					
	道路管理銘板	3-A型 150×300×2 封入レンズ型	枚	4, 260. 00	4, 260. 00	4, 260. 00	4, 260. 00	4, 260. 00					
	道路管理銘板	5-A型 80×400×2 封入レンズ型	枚	3, 140. 00	3, 140. 00	3, 140. 00	3, 140. 00	3, 140. 00					
	道路管理銘板用取付ボルト	SUS	本	72. 80	72. 80	72. 80	72. 80	72. 80					
	銘板	舗装用 黄銅合金250×180t=20	枚	42, 500	42, 500	42, 500	42, 500	42, 500					
	銘板	鋼橋橋壓板 黄銅合金 300×200 t=13	枚	51, 000	51, 000	51, 000	51, 000	51, 000					
	銘板	P C 橋橋壓板 黄銅合金 300×200 t=13	枚	51, 000	51, 000	51, 000	51, 000	51, 000					
	銘板	砂防ダム銘板 黄銅合金 300×500 t=13	枚	115, 000	115, 000	115, 000	115,000	115, 000					
	銘板	樋門等表示板 黄銅合金 300×200 t=13	枚	51, 000	51, 000	51, 000	51, 000	51, 000					
	銘板	トンネル標示板 黄銅合金 600×400t=13	枚	188, 000	188, 000	188, 000	188, 000	188, 000					
	銘板	砂防ダム銘板 黄銅合金 800×500 t=13	枚	303, 000	303, 000	303, 000	303, 000	303, 000					
	ゼブラ板	カプセルレンズ厚1mm アルミ	m 2	71, 100	71, 100	71, 100	71, 100	71, 100					
	ガードレール用支柱	塗装品 AK−2P 直支柱	本	11, 500	11, 500	11, 500	11, 500	11, 500					
	ガードレール用支柱	塗装品 AK−2B 直支柱	本	7, 060. 00	7, 060. 00	7, 060. 00	7, 060. 00	7, 060. 00					
	ガードレール用支柱	塗装品 AK−2PL曲支柱	本	14, 900	14, 900	14, 900	14, 900	14, 900					
	ガードレール用支柱	塗装品 AK−2P 直支柱 景観配慮型	本	14, 400	14, 400	14, 400	14, 400	14, 400					
	ガードレール用支柱	塗装品 AK−2B 直支柱 景観配慮型	本	8, 860	8, 860	8, 860	8, 860	8, 860					

種 別	中部独自共通材料										中部地方整備	請局 単位	左:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知 2 3	三重24				備	考
	ガードレール用支柱	塗装品 AK-2PL曲支柱 景観配慮型	本	18, 600	18, 600	18, 600	18, 600	18, 600					
	ガードレール調節ポスト	GU 400AP ø139.8	本	6, 970. 00	6, 970. 00	6, 970. 00	6, 970. 00	6, 970. 00					
	ガードレール調節ポスト	GU 500AP ¢139.8	本	8, 670. 00	8, 670. 00	8, 670. 00	8, 670. 00	8, 670. 00					
	ガードレール調節ポスト	GU 700AP ¢139.8	本	11, 700	11, 700	11, 700	11, 700	11, 700					
	歩道柵 (支柱)	P 208C STK400 亜鉛M+静電個体塗	本	5, 180. 00	5, 180. 00	5, 180. 00	5, 180. 00	5, 180. 00					
	歩道柵 (支柱)	P 208W STK400 亜鉛M+静電個体塗	本	4, 210. 00	4, 210. 00	4, 210. 00	4, 210. 00	4, 210. 00					
	ガードパイプ 横断・転落防止柵	W ビーム長2m 2段 1030mm	m	6, 100. 00	6, 100. 00	6, 100. 00	6, 100. 00	6, 100. 00					
	ガードパイプ 横断・転落防止柵	C ビーム長2m 2段 1230mm	m	6, 190. 00	6, 190. 00	6, 190. 00	6, 190. 00	6, 190. 00					
	ガードパイプ 横断・転落防止柵	E ビーム長2m 2段 1830mm	m	6, 800. 00	6, 800. 00	6, 800. 00	6, 800. 00	6, 800. 00					
	ガードパイプ 横断・転落防止柵	W ビーム長2m 3段 1030mm	m	7, 620. 00	7, 620. 00	7, 620. 00	7, 620. 00	7, 620. 00					
	ガードパイプ 横断・転落防止柵	C ビーム長2m 3段 1230mm	m	7, 790. 00	7, 790. 00	7, 790. 00	7, 790. 00	7, 790. 00					
	ガードパイプ 横断・転落防止柵	E ビーム長2m 3段 1830mm	m	8, 440	8, 440	8, 440	8, 440	8, 440					
	ガードパイプ 横断・転落防止柵	W ビーム長2m 4段 1330mm	m	9, 750	9, 750	9, 750	9, 750	9, 750					
	ガードパイプ 横断・転落防止柵	C ビーム長2m 4段 1580mm	m	9, 880	9, 880	9, 880	9, 880	9, 880					
	ガードパイプ 横断・転落防止柵	E ビーム長2m 4段 2330mm	m	10, 600	10, 600	10, 600	10, 600	10, 600					
	ガードパイプ 横断・転落防止柵	W ビーム長3m 2段 1030mm	m	4, 670. 00	4, 670. 00	4, 670. 00	4, 670. 00	4, 670. 00					
	ガードパイプ 横断・転落防止柵	C ビーム長3m 2段 1230mm	m	4, 750. 00	4, 750. 00	4, 750. 00	4, 750. 00	4, 750. 00					
	ガードパイプ 横断・転落防止柵	E ビーム長3m 2段 1830mm	m	5, 200. 00	5, 200. 00	5, 200. 00	5, 200. 00	5, 200. 00					
	ガードパイプ 横断・転落防止柵	W ビーム長2m 2段 1030mm 景観配慮型	m	7, 680	7, 680	7, 680	7, 680	7, 680					
	ガードパイプ 横断・転落防止柵	C ビーム長2m 2段 1230mm 景観配慮型	m	7, 770	7, 770	7, 770	7, 770	7, 770					
	ガードパイプ 横断・転落防止柵	E ビーム長2m 2段 1830mm 景観配慮型	m	8, 400	8, 400	8, 400	8, 400	8, 400					
	ガードパイプ 横断・転落防止柵	W ビーム長2m 3段 1030mm 景観配慮型	m	9, 240	9, 240	9, 240	9, 240	9, 240					
	ガードパイプ 横断・転落防止柵	C ビーム長2m 3段 1230mm 景観配慮型	m	9, 400	9, 400	9, 400	9, 400	9, 400					
	ガードパイプ 横断・転落防止柵	E ビーム長2m 3段 1830mm 景観配慮型	m	10, 000	10, 000	10, 000	10, 000	10, 000					
	ガードパイプ 横断・転落防止柵	W ビーム長2m 4段 1330mm 景観配慮型	m	11, 600	11, 600	11, 600	11, 600	11, 600					

種 別	中部独自共通材料									 中部地方整備	局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	ガードパイプ 横断・転落防止柵	C ビーム長2m 4段 1580mm 景観配慮型	m	11,800	11, 800	11, 800	11, 800	11, 800				
	ガードパイプ 横断・転落防止柵	E ビーム長2m 4段 2330mm 景観配慮型	m	12, 600	12, 600	12, 600	12, 600	12, 600				
	ガードパイプ 横断・転落防止柵	W ビーム長3m 2段 1030mm 景観配慮型	m	6, 210	6, 210	6, 210	6, 210	6, 210				
	ガードパイプ 横断・転落防止柵	C ビーム長3m 2段 1230mm 景観配慮型	m	6, 300	6, 300	6, 300	6, 300	6, 300				
	ガードパイプ 横断・転落防止柵	E ビーム長3m 2段 1830mm 景観配慮型	m	6, 760	6, 760	6, 760	6, 760	6, 760				
	ガードパイプ 横断・転落防止柵	W ビーム長3m 4段 1330mm 景観配慮型	m	9, 490	9, 490	9, 490	9, 490	9, 490				
	ガードパイプ 横断・転落防止柵	C ビーム長3m 4段 1580mm 景観配慮型	m	9, 660	9, 660	9, 660	9, 660	9, 660				
	ガードパイプ 横断・転落防止柵	E ビーム長3m 4段 2330mm 景観配慮型	m	10, 300	10, 300	10, 300	10, 300	10, 300				
	ガードパイプ用支柱	W 2段・3段 1030 塗装	本	4, 270. 00	4, 270. 00	4, 270. 00	4, 270. 00	4, 270. 00				
	ガードパイプ用支柱	C 2段・3段 1230 塗装	本	4, 720. 00	4, 720. 00	4, 720. 00	4, 720. 00	4, 720. 00				
	ガードパイプ用支柱	E 2段・3段 1830 塗装	本	6, 570. 00	6, 570. 00	6, 570. 00	6, 570. 00	6, 570. 00				
	ガードパイプ用支柱	W 3段・4段 1430 塗装	本	5, 170. 00	5, 170. 00	5, 170. 00	5, 170. 00	5, 170. 00				
	ガードパイプ用支柱	C 3段・4段 1580 塗装	本	5, 670. 00	5, 670. 00	5, 670. 00	5, 670. 00	5, 670. 00				
	ガードパイプ用支柱	E 3段・4段 2330 塗装	本	8, 010. 00	8, 010. 00	8, 010. 00	8, 010. 00	8, 010. 00				
	ガードパイプ用支柱	W 2段・3段 1030 塗装 景観配慮型	本	5, 350	5, 350	5, 350	5, 350	5, 350				
	ガードパイプ用支柱	C 2段・3段 1230 塗装 景観配慮型	本	5, 940	5, 940	5, 940	5, 940	5, 940				
	ガードパイプ用支柱	E 2段・3段 1830 塗装 景観配慮型	本	8, 230	8, 230	8, 230	8, 230	8, 230				
	ガードパイプ用支柱	W 3段・4段 1430 塗装 景観配慮型	本	6, 480	6, 480	6, 480	6, 480	6, 480				
	ガードパイプ用支柱	C 3段・4段 1580 塗装 景観配慮型	本	7, 110	7, 110	7, 110	7, 110	7, 110				
	ガードパイプ用支柱	E 3段・4段 2330 塗装 景観配慮型	本	10, 000	10, 000	10, 000	10, 000	10, 000				
	ガードパイプ用ビーム	φ 4 2. 7×2. 3×2 0 0 0	本	3, 460. 00	3, 460. 00	3, 460. 00	3, 460. 00	3, 460. 00				
	ガードパイプ用ビーム	φ 4 2. 7×2. 3×3 0 0 0 塗装	本	4, 680. 00	4, 680. 00	4, 680. 00	4, 680. 00	4, 680. 00				
	ガードパイプ用ビーム	φ 4 2. 7×2. 3×2 0 0 0 塗装 景観配慮型	本	4, 360	4, 360	4, 360	4, 360	4, 360				
	ガードパイプ用ビーム	φ 4 2. 7×2. 3×3 0 0 0 塗装 景観配慮型	本	5, 850	5, 850	5, 850	5, 850	5, 850				
	ガードパイプ用袖パイプ	φ 4 2. 7×2. 3 2段用 塗装	本	2, 770. 00	2, 770. 00	2, 770. 00	2, 770. 00	2, 770. 00				

種 別	中部独自共通材料									中部地方整体	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	ガードパイプ用袖パイプ	φ 4 2. 7×2. 3 3段用 塗装	本	3, 990. 00	3, 990. 00	3, 990. 00	3, 990. 00	3, 990. 00				
	ガードパイプ用袖パイプ	φ 4 2. 7×2. 3 4段用 塗装	本	4, 380. 00	4, 380. 00	4, 380. 00	4, 380. 00	4, 380. 00				
	ガードパイプ用袖パイプ	φ 4 2. 7×2. 3 2段用 塗装 景観配慮型	本	3, 480	3, 480	3, 480	3, 480	3, 480				
	ガードパイプ用袖パイプ	φ 4 2. 7×2. 3 3段用 塗装 景観配慮型	本	5,000	5, 000	5, 000	5, 000	5, 000				
	ガードパイプ用袖パイプ	φ 4 2. 7×2. 3 4 段用 塗装 景観配慮型	本	5, 500	5, 500	5, 500	5, 500	5, 500				
	遮光フェンス スクリーン	2. 3×575×4000	枚	25, 900	25, 900	25, 900	25, 900	25, 900				
	遮光フェンス スクリーン	2. 3×960×3000	枚	42, 800	42, 800	42, 800	42, 800	42, 800				
	遮光フェンス スクリーン	2. 3×1100×4000	枚	37, 200	37, 200	37, 200	37, 200	37, 200				
	遮光フェンス 支柱	3. 2×60. 5×930	本	6, 800. 00	6, 800. 00	6, 800. 00	6, 800. 00	6, 800. 00				
	遮光フェンス 支柱	4. 2×89. 1×1530	本	12, 000	12, 000	12, 000	12, 000	12, 000				
	遮光フェンス 支柱	4. 2×89. 1×1550	本	12, 000	12, 000	12, 000	12, 000	12, 000				
	遮音壁用落下防止ワイヤー	径6×1500 ナイロン被膜	本	3, 850. 00	3, 850. 00	3, 850. 00	3, 850. 00	3, 850. 00				
	遮音壁用落下防止ワイヤー	径6×3500 ナイロン被膜	本	5, 810. 00	5, 810. 00	5, 810. 00	5, 810. 00	5, 810. 00				
	遮音壁用落下防止ワイヤー	径6×5500 ナイロン被膜	本	7, 650. 00	7, 650. 00	7, 650. 00	7, 650. 00	7, 650. 00				
	グレーチング 歩車道 側溝	KL 2-30 T2 かき上げ	枚	16, 000	16, 000	16, 000	16, 000	16, 000				
	グレーチング 歩車道 側溝	KL 2-40 T2 かさ上げ	枚	19, 000	19, 000	19, 000	19, 000	19, 000				
	グレーチング 歩車道 側溝	KL 2-50 T2 かき上げ	枚	20, 800	20, 800	20, 800	20, 800	20, 800				
	グレーチング 歩車道 側溝	KLS 2-30 細目 T2 かさ上げ	枚	17, 800	17, 800	17, 800	17, 800	17, 800				
	グレーチング 歩車道 側溝	KLS 2-40 細目 T2 かさ上げ	枚	21, 400	21, 400	21, 400	21, 400	21, 400				
	グレーチング 歩車道 側溝	KLS 2-50 細目 T2 かさ上げ	枚	26, 800	26, 800	26, 800	26, 800	26, 800				
	グレーチング 歩車道 側溝	KM 14-30 T14 かさ上げ	枚	17, 500	17, 500	17, 500	17, 500	17, 500				
	グレーチング 歩車道 側溝	KM 14-40 T14 かさ上げ	枚	23, 400	23, 400	23, 400	23, 400	23, 400				
	グレーチング 歩車道 側溝	KM 14-50 T14 かさ上げ	枚	29, 100	29, 100	29, 100	29, 100	29, 100				
	グレーチング 歩車道 側溝	KM 20-30 T20 かさ上げ	枚	19, 000	19, 000	19, 000	19, 000	19, 000				
	グレーチング 歩車道 側溝	KM 20-40 T20 かさ上げ	枚	24, 900	24, 900	24, 900	24, 900	24, 900				

種 別	中部独自共通材料										中部地方整備	請局 単位	1:円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	グレーチング 歩車道 側溝	KM 20-50 T20 かさ上げ	枚	33, 100	33, 100	33, 100	33, 100	33, 100					
	グレーチング 歩車道 側溝 細目	KMS 14-30 T14 かさ上げ	枚	20, 000	20, 000	20, 000	20, 000	20, 000					
	グレーチング 歩車道 側溝 細目	KMS 14-40 T14 かさ上げ	枚	29, 500	29, 500	29, 500	29, 500	29, 500					
	グレーチング 歩車道 側溝 細目	KMS 14-50 T14 かさ上げ	枚	54, 000	54, 000	54, 000	54, 000	54, 000					
	グレーチング 歩車道 側溝 細目	KMS 20-30 T20 かさ上げ	枚	22, 000	22, 000	22, 000	22, 000	22, 000					
	グレーチング 歩車道 側溝 細目	KMS 20-40 T20 かさ上げ	枚	32, 600	32, 600	32, 600	32, 600	32, 600					
	グレーチング 歩車道 側溝 細目	KN 2-30 T2 かき上げ	枚	18, 100	18, 100	18, 100	18, 100	18, 100					
	グレーチング 歩車道 側溝 細目	KN 2-40 T2 かき上げ	枚	19, 200	19, 200	19, 200	19, 200	19, 200					
	グレーチング 歩車道 側溝 細目	KN 2-50 T2 かき上げ	枚	26, 300	26, 300	26, 300	26, 300	26, 300					
	グレーチング 歩車道 側溝 細目	KN 14-30 T14 かき上げ	枚	23, 400	23, 400	23, 400	23, 400	23, 400					
	グレーチング 歩車道 側溝 細目	KN 14-40 T14 かき上げ	枚	26, 900	26, 900	26, 900	26, 900	26, 900					
	グレーチング 歩車道 側溝 細目	KN 14-50 T14 かき上げ	枚	33, 100	33, 100	33, 100	33, 100	33, 100					
	グレーチング 歩車道 側溝 細目	KN 20-30 T20 かき上げ	枚	27, 300	27, 300	27, 300	27, 300	27, 300					
	グレーチング 歩車道 側溝 細目	KN 20-40 T20 かき上げ	枚	29, 500	29, 500	29, 500	29, 500	29, 500					
	グレーチング 歩車道 側溝 細目	KN 20-50 T20 かき上げ	枚	49, 200	49, 200	49, 200	49, 200	49, 200					
	PU2用グレーチング	B=250 2t 細目	枚	16, 400	16, 400	16, 400	16, 400	16, 400					
	PU2用グレーチング	B=300 2t 細目	枚	19, 300	19, 300	19, 300	19, 300	19, 300					
	PU2用グレーチング	B=400 2t 細目	枚	21, 900	21, 900	21, 900	21, 900	21, 900					
	PU2用グレーチング	B=500 2t 細目	枚	26, 500	26, 500	26, 500	26, 500	26, 500					
	クサリシャックル	グレーチング用 5.5 L=500	本	630. 00	630. 00	630. 00	630.00	630. 00					
	くさび	E 5 – 3	式	1,600.00	1,600.00	1,600.00	1, 600. 00	1, 600. 00					
	くさび	E 5 – 4	式	2, 140. 00	2, 140. 00	2, 140. 00	2, 140. 00	2, 140. 00					
	くさび	E 5 – 7	式	3, 740. 00	3, 740. 00	3, 740. 00	3, 740. 00	3, 740. 00					
	くさび	E 5 – 1 2	式	6, 420	6, 420	6, 420	6, 420	6, 420					
	結束バンド	Aタイプ	個	39. 00	39. 00	39. 00	39. 00	39. 00					

種別	中部独自共通材料								 		中部地方整備	局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	結束バンド	Bタイプ	個	68. 00	68. 00	68. 00	68. 00	68. 00					
	支圧板	# 7 5 防錆タイプE 5 - 4	個	8, 500	8, 500	8, 500	8, 500	8, 500					
	支圧板	#95防錆タイプE5-12	個	29, 300	29, 300	29, 300	29, 300	29, 300					
	コルゲートシース	#75 高密度ポリエチレン	m	1, 270. 00	1, 270. 00	1, 270. 00	1, 270. 00	1, 270. 00					
	コルゲートシース	#95 高密度ポリエチレン	m	1,870.00	1, 870. 00	1, 870. 00	1, 870. 00	1, 870. 00					
	エンドキャップ	#75 高密度ポリエチレン	個	782. 00	782.00	782. 00	782.00	782. 00					
	エンドキャップ	#95 高密度ポリエチレン	個	1, 430. 00	1, 430. 00	1, 430. 00	1, 430. 00	1, 430. 00					
	シールディスク	止水用 #75 ネオプレンゴム	枚	510. 00	510.00	510. 00	510.00	510.00					
	スペーサー	#75 ポリプロピレン	個	165. 00	165. 00	165. 00	165.00	165. 00					
	スペーサー	#95 ポリプロピレン	個	195. 00	195. 00	195. 00	195.00	195. 00					
	ヘッドキャップ	#75 Sタイプ	個	4, 590	4, 590	4, 590	4, 590	4, 590					
	ヘッドキャップ	#95 E-L	個	6, 460	6, 460	6, 460	6, 460	6, 460					
	アンカーヘッド	E 5 – 3	式	1,700.00	1, 700. 00	1, 700. 00	1, 700. 00	1, 700. 00					
	防錆材	永久アンカー用	k g	1,060.00	1, 060. 00	1, 060. 00	1, 060. 00	1, 060. 00					
	防錆材	ヘッドキャップ用	k g	1, 180. 00	1, 180. 00	1, 180. 00	1, 180. 00	1, 180. 00					
	防錆材	アンカー孔加工品 SBRゴムRDパッキン102	個	5, 120. 00	5, 120. 00	5, 120. 00	5, 120. 00	5, 120. 00					
	防錆材	アンカー孔加工品 SBRゴムRDパッキン106	個	5, 310. 00	5, 310. 00	5, 310. 00	5, 310. 00	5, 310. 00					
	防錆材	アンカー孔加工品 SBRゴムRDパッキン110	個	5, 500. 00	5, 500. 00	5, 500. 00	5, 500. 00	5, 500. 00					
	防錆材	アンカー孔加工品 SBRゴムRDパッキン138	個	6, 830. 00	6, 830. 00	6, 830. 00	6, 830. 00	6, 830. 00					
	アンボンドチューブ	呼13.5外15.5中密度ポリ	m	114. 00	114. 00	114. 00	114.00	114.00					
	アンカー止水材		k g	1, 530. 00	1, 530. 00	1, 530. 00	1, 530. 00	1, 530. 00					
	チョーチンスペーサー	SS400	個	500.00	500.00	500.00	500.00	500.00					
	パイロットキャップ	E 5 – 4	個	1, 360. 00	1, 360. 00	1, 360. 00	1, 360. 00	1, 360. 00					
	植栽名板	中低木用アクリル板 掘込文字 120×250×3	枚	3, 990. 00	3, 990. 00	3, 990. 00	3, 990. 00	3, 990. 00					
	植栽名板	高木用アクリル板 掘込文字 200× 60×3	枚	2,700.00	2, 700. 00	2, 700. 00	2, 700. 00	2, 700. 00					

種 別	中部独自共通材料									中部地方整備	請局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	樹脂モルタル材		m 2	5, 140. 00	5, 140. 00	5, 140. 00	5, 140. 00	5, 140. 00				
	ロックボルトキャップ	D25 φ45×h55 M24ナット用	個	90.00	90. 00	90. 00	90. 00	90.00				
	カップラー	PC鋼棒用 径32mm用	個	2, 140. 00	2, 140. 00	2, 140. 00	2, 140. 00	2, 140. 00				
	異形シース	KCシース鋼棒32mm300	個	1, 100. 00	1, 100. 00	1, 100. 00	1, 100. 00	1, 100. 00				
	ジョイントシールゴム	A-1型 (カットオフ材)	m	6, 750. 00	6, 750. 00	6, 750. 00	6, 750. 00	6, 750. 00				
	ジョイントシールゴム	A-2型 (カットオフ材)	m	9, 000. 00	9, 000. 00	9, 000. 00	9, 000. 00	9, 000. 00				
	ジョイントシールゴム	A-3型 (カットオフ材)	m	12, 100	12, 100	12, 100	12, 100	12, 100				
	ラウンドアップ液剤	ラウンドアップ液剤	L	3, 660	3, 660	3, 660	3, 660	3, 660				
	替刃	法面自走式	枚	540.00	540.00	540.00	540.00	540.00				

種 別	各種料金その他									中部地方整備	請局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備	考
	平板載荷試験	単サイクル150KN以下 標準部	箇所	362, 000. 00	362, 000. 00	362, 000. 00	362, 000. 00	362, 000. 00				
	平板載荷試験	単サイクル150KN以下 仮締切内	箇所	412, 000. 00	412, 000. 00	412, 000. 00	412, 000. 00	412, 000. 00				
								1	1			

種 別	市場単価										中部地方整備	前局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	銘板(アンカーボルト含まず)	500*500*13 鋳物用黄銅合金地金	枚	189, 000	189, 000	189, 000	189,000	189, 000					
	標識柱設置(手間のみ)	防護柵添架式 支柱径 φ 60.5	基	5, 550	5, 550	5, 550	5, 550	5, 550					
	標識柱設置(手間のみ)	防護柵添架式 支柱径 ¢ 76.3	基	5, 550	5, 550	5, 550	5, 550	5, 550					
	標識柱設置(手間のみ)	防護柵添架式 支柱径 \$ 89.1	基	5, 550	5, 550	5, 550	5, 550	5, 550					
	標識柱設置(手間のみ)	防護柵添架式 支柱径 ø 101.6	基	6, 960	6, 960	6, 960	6, 960	6, 960					

種 別	中部独自一般材								 		中部地方整体	備局 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	グレーチング 支道部固定横断用	KA20-30 T20 W30	枚	28, 600	28, 600	28, 600	28, 600	28, 600					
	グレーチング 支道部固定横断用	KA20-40 T20 W40	枚	36, 000	36, 000	36, 000	36, 000	36, 000					
	グレーチング 支道部固定横断用	KA20-50 T20 W50	枚	43, 300	43, 300	43, 300	43, 300	43, 300					
	グレーチング 支道部固定横断用	KA20-60 T20 W60	枚	75, 400	75, 400	75, 400	75, 400	75, 400					
	グレーチング 支道部固定横断用	KA20-70 T20 W70	枚	91, 800	91, 800	91, 800	91, 800	91, 800					
	グレーチング 支道部固定横断用	KA20-80 T20 W80	枚	97, 200	97, 200	97, 200	97, 200	97, 200					
	グレーチング 支道部固定横断用	KA20-90 T20 W90	枚	104, 000	104, 000	104, 000	104, 000	104, 000					
	グレーチング 支道部固定横断用	KA20-100 T20 W100	枚	119,000	119, 000	119, 000	119,000	119, 000					
	グレーチング 支道部固定横断用	KB14-30 T14 W30	枚	26, 300	26, 300	26, 300	26, 300	26, 300					
	グレーチング 支道部固定横断用	KB14-40 T14 W40	枚	31, 700	31, 700	31, 700	31, 700	31, 700					
	グレーチング 支道部固定横断用	KB14-50 T14 W50	枚	38, 900	38, 900	38, 900	38, 900	38, 900					
	グレーチング 支道部固定横断用	KB14-60 T14 W60	枚	47, 900	47, 900	47, 900	47, 900	47, 900					
	グレーチング 支道部固定横断用	KB14-70 T14 W70	枚	71, 100	71, 100	71, 100	71, 100	71, 100					
	グレーチング 支道部固定横断用	KB14-80 T14 W80	枚	89, 200	89, 200	89, 200	89, 200	89, 200					
	グレーチング 支道部固定横断用	KB14-90 T14 W90	枚	98, 900	98, 900	98, 900	98, 900	98, 900					
	グレーチング 支道部固定横断用	KB14-100 T14 W100	枚	105, 000	105, 000	105, 000	105, 000	105, 000					
	グレーチング 乗入部側溝用	KC20-30 T20 W30	枚	21, 800	21, 800	21, 800	21, 800	21, 800					
	グレーチング 乗入部側溝用	KC20-40 T20 W40	枚	31, 400	31, 400	31, 400	31, 400	31, 400					
	グレーチング 乗入部側溝用	KC20-50 T20 W50	枚	38, 700	38, 700	38, 700	38, 700	38, 700					
	グレーチング 乗入部側溝用	KC20-60 T20 W60	枚	60, 600	60, 600	60, 600	60, 600	60, 600					
	グレーチング 乗入部側溝用	KC20-70 T20 W70	枚	70, 200	70, 200	70, 200	70, 200	70, 200					
	グレーチング 乗入部側溝用	KC20-80 T20 W80	枚	83, 100	83, 100	83, 100	83, 100	83, 100					
	グレーチング 乗入部側溝用	KC20-90 T20 W90	枚	90, 800	90, 800	90, 800	90, 800	90, 800					
	グレーチング 乗入部側溝用	KC20-100 T20 W100	枚	104, 000	104, 000	104, 000	104, 000	104, 000					
	グレーチング 乗入部側溝用	KD14-30 T14 W30	枚	21, 600	21, 600	21, 600	21, 600	21, 600					

種 別	中部独自一般材								 	 中部地方數	E 備局	単位: []
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24			備		考
	グレーチング 乗入部側溝用	KD14-40 T14 W40	枚	27, 100	27, 100	27, 100	27, 100	27, 100					
	グレーチング 乗入部側溝用	KD14-50 T14 W50	枚	34, 200	34, 200	34, 200	34, 200	34, 200					
	グレーチング 乗入部側溝用	KD14-60 T14 W60	枚	43, 200	43, 200	43, 200	43, 200	43, 200					
	グレーチング 乗入部側溝用	KD14-70 T14 W70	枚	58, 900	58, 900	58, 900	58, 900	58, 900					
	グレーチング 乗入部側溝用	KD14-80 T14 W80	枚	78, 500	78, 500	78, 500	78, 500	78, 500					
	グレーチング 乗入部側溝用	KD14-90 T14 W90	枚	85, 000	85, 000	85, 000	85, 000	85, 000					
	グレーチング 乗入部側溝用	KD14-100 T14 W100	枚	91, 500	91, 500	91, 500	91, 500	91, 500					
	グレーチング 歩道部側溝用	KE2-30 T2 かさ上げ	枚	15, 100	15, 100	15, 100	15, 100	15, 100					
	グレーチング 歩道部側溝用	KE2-40 T2 かき上げ	枚	15, 600	15, 600	15, 600	15, 600	15, 600					
	グレーチング 歩道部側溝用	KE2-50 T2 かさ上げ	枚	17, 100	17, 100	17, 100	17, 100	17, 100					
	グレーチング 歩道部側溝用	KE2-60 T2 かさ上げ	枚	19, 700	19, 700	19, 700	19, 700	19, 700					
	グレーチング 歩道部側溝用	KE2-70 T2 かさ上げ	枚	22, 100	22, 100	22, 100	22, 100	22, 100					
	グレーチング 歩道部側溝用	KE2-80 T2 かさ上げ	枚	38, 400	38, 400	38, 400	38, 400	38, 400					
	グレーチング 歩道部側溝用	KE2-90 T2 かさ上げ	枚	51,000	51, 000	51, 000	51, 000	51, 000					
	グレーチング 歩道部側溝用	KE2-100 T2 かさ上げ	枚	59, 300	59, 300	59, 300	59, 300	59, 300					
	グレーチング 歩道部側溝用	KH14-30 T14 かき上げ	枚	16, 400	16, 400	16, 400	16, 400	16, 400					
	グレーチング 歩道部側溝用	KH14-40 T14 かき上げ	枚	23, 000	23, 000	23, 000	23, 000	23, 000					
	グレーチング 歩道部側溝用	KH14-50 T14 かき上げ	枚	29, 700	29, 700	29, 700	29, 700	29, 700					
	グレーチング 歩道部側溝用	KH14-60 T14 かき上げ	枚	53, 000	53, 000	53, 000	53, 000	53, 000					
	グレーチング 歩道部側溝用	KH14-70 T14 かき上げ	枚	64, 800	64, 800	64, 800	64, 800	64, 800					
	グレーチング 歩道部側溝用	KH14-80 T14 かき上げ	枚	93, 300	93, 300	93, 300	93, 300	93, 300					
	グレーチング 歩道部側溝用	KH14-90 T14 かき上げ	枚	110, 000	110, 000	110, 000	110,000	110, 000					
	グレーチング 歩道部側溝用	KH14-100 T14 かさ上げ	枚	113, 000	113, 000	113, 000	113,000	113, 000					
	グレーチング 歩道部U字溝用	KF2-30 T2	枚	13, 100	13, 100	13, 100	13, 100	13, 100					
	グレーチング 歩道部U字溝用	K F 2 – 3 6 T 2	枚	9, 770	9, 770	9, 770	9, 770	9, 770					

種 別	中部独自一般材										中部地方整備原	声 単位	: 円
	品目	規格	単 位	長野20	岐阜21	静岡 2 2	愛知23	三重24				備	考
	グレーチング 歩道部U字溝用	KF2-45 T2	枚	11, 300	11, 300	11, 300	11, 300	11, 300					
	グレーチング 歩道側溝 細目	KG2-30 T2 かさ上げ	枚	18, 900	18, 900	18, 900	18, 900	18, 900					
	グレーチング 歩道側溝 細目	KG2-40 T2 かさ上げ	枚	21, 600	21, 600	21, 600	21, 600	21, 600					
	グレーチング 歩道側溝 細目	KG2-50 T2 かさ上げ	枚	27, 800	27, 800	27, 800	27, 800	27, 800					
	グレーチング 歩道側溝 細目	KG2-60 T2 かさ上げ	枚	31, 000	31, 000	31, 000	31, 000	31, 000					
	グレーチング 歩道側溝 細目	KG2-70 T2 かさ上げ	枚	38, 800	38, 800	38, 800	38, 800	38, 800					
	グレーチング 歩道側溝 細目	KG2-80 T2 かさ上げ	枚	68, 000	68, 000	68, 000	68, 000	68, 000					
	グレーチング 歩道側溝 細目	KG2-90 T2 かさ上げ	枚	77, 300	77, 300	77, 300	77, 300	77, 300					
	グレーチング 歩道側溝 細目	KG2-100 T2 かさ上げ	枚	121,000	121,000	121,000	121,000	121, 000					
	グレーチング 横断用	К Ј 6 — 3 0 Т 6	枚	21, 600	21, 600	21, 600	21, 600	21, 600					
	グレーチング 横断用	КЈ6-40 Т6	枚	27, 700	27, 700	27, 700	27, 700	27, 700					
	グレーチング 横断用	К Ј 6 — 5 0 Т 6	枚	32, 500	32, 500	32, 500	32, 500	32, 500					
	グレーチング 横断用	КЈ6-60 Т6	枚	38, 300	38, 300	38, 300	38, 300	38, 300					
	グレーチング 横断用	КЈ6-70 Т6	枚	54, 700	54, 700	54, 700	54, 700	54, 700					
	グレーチング 横断用	КЈ6-80 Т6	枚	68, 600	68, 600	68, 600	68, 600	68, 600					
	グレーチング 横断用	КЈ6-90 Т6	枚	80, 800	80, 800	80, 800	80, 800	80, 800					
	グレーチング 横断用	КЈ6-100 Т6	枚	87, 300	87, 300	87, 300	87, 300	87, 300					
	グレーチング 側溝用	KK6-30 T6	枚	17, 900	17, 900	17, 900	17, 900	17, 900					
	グレーチング 側溝用	KK6-40 T6	枚	24, 600	24, 600	24, 600	24, 600	24, 600					
	グレーチング 側溝用	KK6-50 T6	枚	28, 100	28, 100	28, 100	28, 100	28, 100					
	グレーチング 側溝用	KK6-60 T6	枚	36, 300	36, 300	36, 300	36, 300	36, 300					
	グレーチング 側溝用	KK6-70 T6	枚	52, 800	52, 800	52, 800	52, 800	52, 800					
	グレーチング 側溝用	KK6-80 T6	枚	61, 400	61, 400	61, 400	61, 400	61, 400					
	グレーチング 側溝用	KK6-90 T6	枚	75, 400	75, 400	75, 400	75, 400	75, 400					
	グレーチング 側溝用	KK6-100 T6	枚	81, 600	81, 600	81, 600	81, 600	81, 600					